考点解析-云南省泸水市中考数学真题分类(数据分析)汇编综合练习试题(含详细解析)_第1页
考点解析-云南省泸水市中考数学真题分类(数据分析)汇编综合练习试题(含详细解析)_第2页
考点解析-云南省泸水市中考数学真题分类(数据分析)汇编综合练习试题(含详细解析)_第3页
考点解析-云南省泸水市中考数学真题分类(数据分析)汇编综合练习试题(含详细解析)_第4页
考点解析-云南省泸水市中考数学真题分类(数据分析)汇编综合练习试题(含详细解析)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省泸水市中考数学真题分类(数据分析)汇编综合练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是(

)A.平均数 B.中位数 C.众数 D.方差2、一组数据的方差计算公式为,下列关于这组数据的说法错误的是(

)A.平均数是9 B.中位数是8.5 C.众数是8 D.方差是13、数据﹣1,0,3,4,4的平均数是()A.4 B.3 C.2.5 D.24、一组数据6,9,8,8,9,7,9的众数是(

)A.6 B.7 C.8 D.95、开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温()36.236.336.536.636.8天数(天)33422这14天中,小宁体温的众数和中位数分别为(

)A., B., C., D.,6、小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是(

)A.中位数是3,众数是2 B.众数是1,平均数是2C.中位数是2,众数是2 D.中位数是3,平均数是2.57、某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87 B.87.5 C.87.6 D.888、在2019年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、平均数依次是(

)A.48,48,48 B.48,47.5,47.5C.48,48,48.5 D.48,47.5,48.5第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、某校女子排球队队员的年龄分布如下表:年龄131415人数474则该校女子排球队队员的平均年龄是岁.2、如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为_______.3、2022年2月冬奥会在北京举行,中国等五个国家奖牌总数如表.这组数据的中位数是________.国家中国挪威德国美国瑞典奖牌总数(个)27371525184、超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩(分数)708092将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是_____分.5、若一组数据3,x,4,2的众数和中位数相等,则x的值为________.6、如果样本方差,那么这个样本的平均数是_______,样本容量是________.7、某手表厂抽查了10只手表的日走时误差,数据如下表所示:日走时误差(单位:秒)0123只数4321则这10只手表的平均日走时误差是______秒.三、解答题(7小题,每小题10分,共计70分)1、某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月平均用水量(单位:t).根据调查结果,绘制出的条形统计图和扇形统计图如下:根据以上信息,解答下列问题:(1)直接补全上面条形统计图,m=;(2)本次调查的家庭月平均用水量的众数是t,中位数是t;(3)该社区共计有1000户家庭,请你估计该社区的月平均用水量.2、在“双减”政策实施两个月后,某市“双减办”面向本市城区学生,就“‘双减’前后参加校外学科补习班的情况”进行了一次随机问卷调查(以下将“参加校外学科补习班”简称“报班”),根据问卷提交时间的不同,把收集到的数据分两组进行整理,分别得到统计表1和统计图1:整理描述表1:“双减”前后报班情况统计表(第一组)(1)根据表1,m的值为__________,的值为__________;(2)分析处理:请你汇总表1和图1中的数据,求出“双减”后报班数为3的学生人数所占的百分比;(3)“双减办”汇总数据后,制作了“双减”前后报班情况的折线统计图(如图2).请依据以上图表中的信息回答以下问题:①本次调查中,“双减”前学生报班个数的中位数为__________,“双减”后学生报班个数的众数为__________;②请对该市城区学生“双减”前后报班个数变化情况作出对比分析(用一句话来概括).3、在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.成绩/m1.501.601.651.701.751.80人数232341分别计算这些运动员成绩的平均数、中位数、众数(结果保留小数点后两位).4、某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t).根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的家庭个数为________,图①中m的值为_______;(Ⅱ)求统计的这组月均用水量数据的平均数、众数和中位数.5、某防护服生产公司旗下有A、B两个生产车间,为了解A、B两个生产车间工人的日均生产数量,公司领导小组从A、B两个生产车间分别随机抽取了20名工人的日均生产数量x(单位:套),并对数据进行分析整理(数据分为五组:A.25≤x<35,B.35≤x<45,C.45≤x<55,D.55≤x<65,E.65≤x<75).得出了以下部分信息:A.B两个生产车间工人日均生产数量的平均数、中位数、众数、极差如表:车间平均数(个)中位数(个)众数(个)极差A54566242Bab6445“B生产车间”工人日均生产数量在C组中的数据是:52,45,54,48,54,其余所有数据的和为807.根据以上信息,回答下列问题:(1)上述统计图表中,a=,b=.扇形统计图B组所对应扇形的圆心角度数为°.(2)根据以上数据,你认为哪个生产车间情况更好?请说明理由(一条理由即可);(3)若A生产车间共有200名工人,B生产车间共有180个工人,请估计该公司生产防护服数量在“45≤x<65”范围的工人数量.6、在读书节活动中,某校为了解学生参加活动的情况,随机调查了部分学生每人参加活动的项数.根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为___________,图①中m的值为___________;(2)求统计的这组项数数据的平均数、众数和中位数.7、我校小李同学对北大附中初中三个年级的学生年龄构成很感兴趣,整理数据并绘制如图所示不完整的统计图.依据信息解答下列问题.(1)求样本容量;(2)直接写出样本数据的众数、中位数;(3)已知北大附中实验学校一共有1920名学生,请估计全校年龄在14岁及以上的学生大约有多少人.-参考答案-一、单选题1、B【解析】【分析】根据题意可得,计算平均数、众数及方差需要全部数据,从统计图可得:前三组的数据共有5+11+16=32,共有50名学生,中位数为第25与26位的平均数,据此即可得出结果.【详解】解:根据题意可得,计算平均数、方差需要全部数据,故A、D不符合题意;∵50-5-11-16=18>16,∴无法确定众数分布在哪一组,故C不符合题意;从统计图可得:前三组的数据共有5+11+16=32,共有50名学生,中位数为第25与26位的平均数,∴已知的数据中中位数确定,且不受后面数据的影响,故选:B.【考点】题目主要考查条形统计图与中位数、平均数、众数及方差的关系,理解题意,掌握中位数、平均数、众数及方差的计算方法是解题关键.2、D【解析】【分析】由题意得:这组数据为8,8,9,11,由此求解判断即可.【详解】解:由题意得:这组数据为8,8,9,11,∴这组数据的平均数为9,中位数为,众数为8,∴,故选D.【考点】本题主要考查了方差公式,求平均数,中位数,总数和方差,根据方差公式得到这组数据是解题的关键.3、D【解析】【分析】根据题目中的数据,可以求得这组数据的平均数,本题得以解决.【详解】解:==2,故选:D.【考点】本题考查算术平均数,解答本题的关键是明确算术平均数的计算方法.4、D【解析】【分析】根据众数的概念求解即可.【详解】解:这组数据中9出现3次,次数最多,所以这组数据的众数为9,故选:D.【考点】本题主要考查众数,一组数据中出现次数最多的数据叫做众数.5、B【解析】【分析】应用众数和中位数的定义进行就算即可得出答案.【详解】解:由统计表可知,36.5℃出现了4次,次数最多,故众数为36.5,中位数为=36.5(℃).故选:B.【考点】本题主要考查了众数和中位数,熟练掌握众数和中位数的计算方法进行求解是解决本题的关键.6、C【解析】【分析】根据统计图中的数据,求出中位数,平均数,众数,即可做出判断.【详解】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;故选:C.【考点】此题考查了平均数,中位数,众数,熟练掌握各自的求法是解本题的关键.7、C【解析】【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.【详解】小王的最后得分为:90×+88×+83×=27+44+16.6=87.6(分),故选C.【考点】本题考查了加权平均数,数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.8、A【解析】【分析】根据众数、中位数的定义和平均数公式分别进行解答即可.【详解】解:这组数据中48出现的次数最多,则这组数据的众数是48;把这组数据按从小到大排列,最中间两个数的平均数是(48+48)÷2=48,则中位数是48;这组数据的平均数是(47×2+48×3+50)÷6=48,故选:A.【考点】本题考查了众数、中位数和平均数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n个数据,x1,x2,…xn的平均数为.二、填空题1、14.【解析】【详解】平均数是指在一组数据中所有数据之和再除以数据的个数,因此,该校女子排球队队员的平均年龄是(岁).故答案为:14.2、.【解析】【分析】先根据平均数的定义确定出a的值,再根据方差公式进行计算即可求出答案.【详解】解:根据题意,得:,解得:,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为,故答案为.【考点】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.3、25【解析】【分析】根据中位数的定义求解,先将数据从小到大的顺序排列,如果这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】这组数据从小到大排列为:15、18、25、27、37所以这组数据的中位数是25故答案为:25【考点】本题主要考查中位数,掌握求中位数的方法是解题的关键.4、77.4.【解析】【详解】试题分析:根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值可得该应聘者的总成绩是:70×+80×+92×=77.4分.考点:加权平均数.5、【解析】【分析】由一组数据3,x,4,2有众数,可得或或再分类讨论即可得到答案.【详解】解:一组数据3,x,4,2有众数,或或当时,则数据为:此时中位数为众数为2,不合题意,舍去,当时,则数据为:此时中位数为众数为3,符合题意,当时,则数据为:此时中位数为众数为4,不符合题意,舍去,综上:故答案为:【考点】本题考查的是中位数与众数的含义,有清晰的分类讨论思想是解题的关键.6、

18

20【解析】【分析】先根据方差公式中所有字母所代表的意义,n是样本容量,是样本中的平均数,再结合给出的式子即可得出答案.【详解】解:在公式中,平均数是,样本容量是n,在中,这个样本的平均数为18,样本容量为20.故答案为:18;20.【考点】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7、1【解析】【分析】根据已知数据求算术平均数,将所有数据求和除以数据个数即可.【详解】平均日走时误差(秒).故答案为:1.【考点】本题考查了算术平均数的概念,根据概念求解是解题的关键.三、解答题1、(1)补全统计图见解析,30(2)5,6.5(3)6.3t【解析】【分析】(1)根据用水5t的家庭户数和所占的百分比,得出本次调查的家庭总户数,即可得出“用水6t”的家庭户数,进而补全条形统计图;再根据“用水7t”的家庭户数,即可求得m的值;(2)根据众数的定义及中位数的求法即可解答;(3)根据加权平均数的计算方法即可求得.(1)解:本次调查的家庭总数为(户)故月平均用水量6t的家庭数为:(户)补全条形统计图如下:故m=30故答案为:30;(2)解:在这组数据中5t出现的次数最多,故众数是5t把这组数据从小到大排列后,第25个和第26个数据的平均数为中位数第25个数据是6t,第26个数据是7t,故这组数据的中位数为:,故答案为:5,6.5;(3)解:.答:估计该社区的月平均用水量为6.3t.【考点】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.2、(1)300;(2)见解析;(3)①1;0;②见解析【解析】【分析】(1)将表1中“双减前”各个数据求和确定m的值,然后再计算求得n值,从而求解;(2)通过汇总表1和图1求得“双减后”报班数为3的学生人数,从而求解百分比;(3)①根据中位数和众数的概念分析求解;②根据“双减”政策对学生报班个数的影响结果角度进行分析说明.(1)解:由题意得,,解得,∴,故答案为:300;(2)汇总表1和图1可得:01234及以上总数“双减”前172821188246500“双减”后4232440121500∴“双减”后报班数为3的学生人数所占的百分比为;(3)“双减”前共调查500个数据,从小到大排列后,第250个和第251个数据均为1,∴“双减”前学生报班个数的中位数为1,“双减”后学生报班个数出现次数最多的是0,∴“双减”后学生报班个数的众数为0,故答案为:1;0;②从“双减”前后学生报班个数的变化情况说明:“双减”政策宣传落实到位,参加校外培训机构的学生大幅度减少,“双减”取得了显著效果.【考点】本题考查统计的应用,理解题意,对数据进行采集和整理,掌握中位数和众数的概念是解题关键.3、这些运动员成绩的平均数、中位数、众数分别为1.67,1.70,1.75.【解析】【分析】由平均数的计算公式即可算出平均数;把各运动员的成绩按从低到高排列,正中间的数是中位数;成绩人数最多的数便是众数【详解】平均数为:由成绩表知,正中间的数是1.70,故中位数为1.70由于成绩为1.70米的学生人数最多,故众数这1.75所以这些运动员成绩的平均数、中位数、众数分别为1.67,1.70,1.75.【考点】本题考查了求一组数据的平均数、中位数、众数,掌握它们的概念及计算方法是关键.4、(Ⅰ)50,20;(Ⅱ)这组数据的平均数是5.9;众数为6;中位数为6.【解析】【分析】(Ⅰ)利用用水量为5t的家庭个数除以其所占百分比即可求出本次接受调查的家庭个数;利用用水量为6.5t的家庭个数除以本次接受调查的家庭个数即得出其所占百分比,即得出m的值.(Ⅱ)根据加权平均数的公式,中位数,众数的定义即可求出结果.【详解】(Ⅰ)本次接受调查的家庭个数=,由题意可知,解得.故答案为50,20.(Ⅱ)观察条形统计图,∵,5、(1)53,54,72;(2)“A车间”的生产情况较好,理由见解析;(3)估计生产防护服数量在“45≤x<65”范围的工人大约有199人【解析】【分析】(1)“B生产车间”工人日均生产数量在C组中的数据是:52,45,54,48,54,可求出“B生产车间”工人日均生产数量在C组的百分比,进而求出工人日均生产数量在B组的百分比,再根据平均数、中位数、众数的意义求解即可;(2)根据中位数、平均数、极差的比较得出答案;(3)根据两个车间的在“45≤x<65”范围所占的百分比,通过教师得出答案.【详解】解:(1)“B生产车间”工人日均生产数量在C组中的数据是:52,45,54,48,54,因此“C组”所占的百分比为5÷20=25%,“B组”所占的百分比为1﹣25%﹣10%﹣15%﹣30%=20%,所以“A组”的频数为:20×10%=2(人),“B组”的频数为:20×20%=4(人),“C组”的频数为:20×25%=5(人),“D组”的频数为:20×30%=6(人),“E组”的频数为:20×15%=3(人),因此“B车间”20名工人,日生产数量从小到大排列,处在中间位置的两个数的都是54,所以中位数是54,即b=54,“B车间”20名工人,日生产数量的平均数为:30×10%+40×20%+50×25%+60×30%+70×15%=53,即a=53,360°×20%=72°,故答案

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论