




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青岛版8年级下册数学期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、将一副三角板如图①的位置摆放,其中30°直角三角板的直角边与等腰直角三角板的斜边重合,30°直角三角板直角顶点与等腰直角三角板的锐角顶点重合(为点O).现将30°的直角三角板绕点O顺时针旋转至如图②的位置,此时,则(
)A.30° B.25° C.20° D.15°2、若在实数范围内有意义,则的取值范围是(
)A. B. C. D.3、下列图形中既是中心对称图形,又是轴对称图形的是(
)A. B. C. D.4、如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.24 B.48 C.72 D.965、如图,点A的坐标是(2,2),若点P在x轴上,且△AOP是等腰三角形,则点P的坐标不可能是()A.(2,0) B.(4,0) C.(﹣,0) D.(3,0)6、如图,折叠长方形ABCD纸片,点D落在BC边的点F处(AE为折痕).已知AB=8,BC=10,则EC等于(
)A.3 B.4 C.5 D.67、如图,在△ABC中,点D、E分别是AB、AC的中点,AC=10,点F是DE上一点.DF=1.连接AF,CF.若∠AFC=90°,则BC的长是()A.18 B.16 C.14 D.128、如图,已知在正方形中,厘米,,点在边上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点在线段上由点向点运动,设运动时间为t秒,当ΔBPE与ΔCQP全等时,的值为()A.2 B.2或1.5 C.2.5 D.2.5或2第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、春节期间,某超市推出了甲、乙、丙三种腊味套盒,各套盒均含有香肠、腊肉、腊排骨、腊猪脚等四种腊味各若干袋,每袋腊味的重量为500克,一袋腊肉的售价不低于30元,一袋香肠的售价比一袋腊肉的售价贵,单袋腊味的售价均为整数元,套盒的售价即为单袋腊味的售价之和,甲套盒中含有香肠2袋,腊肉5袋,腊排骨2袋,腊猪脚2袋,乙套盒中含有香肠4袋,腊肉5袋,腊排骨1袋,腊猪脚1袋,丙套盒中含有香肠3袋,腊肉5袋,腊排骨2袋,腊猪脚1袋,甲、乙礼盒售价均为415元,丙礼盒售价比甲礼盒贵10元,则腊排骨每袋______元.2、如图,直线与直线交于点,由图象可知,不等式的解为______.3、已知4+的小数部分为k,则=_____.4、如图,点A坐标为(-4,-4),点B(0,m)在y轴的负半轴上沿负方向运动时,作Rt△ABC,其中∠BAC=90°.直线AC与x轴正半轴交于点C(n,0),当B点的运动过程中时,则m+n的值为______.5、如果单项式3xmy和﹣5x3yn是同类项,那么______(填“>”“<”或“=”)(2021m﹣n)0.6、如图,在平面直角坐标系xOy中,矩形OABC的顶点B坐标为(12,5),D是CB边上一动点,(D不与BC重合),以AD为边作正方形ADEF,连接BE、BF,若为等腰三角形,则正方形ADEF的边长_____.7、正方形A1B1C1O,A2B2C2C1,A3BC3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和y轴上,已知点B1(1,1),B2(2,3),则点B3的坐标是_____,点Bn的坐标是_____.三、解答题(7小题,每小题10分,共计70分)1、计算.2、如图,△ABC和△ADE是两个叠放在一起的全等的直角三角形,∠B=30°,△ABC固定不动,将△ADE绕直角顶点A旋转,边AD与边BC交于点P(不与点B,C重合),∠PAC和∠PCA的平分线交于点I.(1)当△ABP是等腰三角形时,求∠PAC的度数;(2)在△ADE的旋转过程中,PD的长度在不断发生变化,当PD取最大值时,求∠AIC的度数;(3)确定∠AIC度数的取值范围.3、如图,,分别为锐角边,上的点,把沿折叠,点落在所在平面内的点处.(1)如图1,点在的内部,若,,求的度数.(2)如图2,若,,折叠后点在直线上方,与交于点,且,求折痕的长.(3)如图3,若折叠后,直线,垂足为点,且,,求此时的长.4、小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.读书天数12345页码之差7260483624页码之和152220424(1)表中空白部分从左到右2个数据依次为,;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)5、如图,在△ABC中,∠ACB=90°.(1)在斜边AB上找一点P,使点P到AC的距离等于BP的长.请用无刻度直尺和圆规作出点P(不写画法,保留作图痕迹);(2)若BC=4.5,AB=7.5,则AC的长为_______,(1)中BP的长为_______.6、济南某社区为倡导健康生活,推进全民健身,去年购进A,B两种健身器材若干件.经了解,B种健身器材的单价是A种健身器材的1.5倍,用6000元购买A种健身器材比用3600元购买B种健身器材多15件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共60件,且B种健身器材的数量不少于A种健身器材的4倍,请你确定一种购买方案使得购进A,B两种健身器材的费用最少.7、对于平面直角坐标系xOy中的图形W和点P(点P在图形W上),给出如下定义:若点,……,都在图形W上,且,那么称点,,……,是图形W关于点P的“等距点”,线段,,……,是图形W关于点P的“等距线段”.(1)如图1,已知点B(-2,0),C(2,0),A(0,a)()①判断:点B,C△ABC关于点O的“等距点”,线段OA,OB△ABC关于点O的“等距线段”;(填“是”或“不是”)②△ABC关于点O的两个“等距点”,分别在边AB,AC上,当相应的“等距线段”最短时,请在图1中画出线段,;(2)如图2,已知C(4,0),A(2,2),P(3,0),若点C,D是△AOC关于点P的“等距点”,求点D的坐标;(3)如图3,已知C(a,0)在x轴的正半轴上,.点P(x,0),△AOC关于点P的“等距点”恰好有四个,且其中一个点是点O,请直接写出点P横坐标的取值范围.(用含a的式子表示)-参考答案-一、单选题1、B【解析】【分析】根据旋转和三角板的特点即可得出,,从而可求出的大小,再结合的大小即可求出的值.【详解】如图,根据三角板的特点和旋转的性质,可知,,∴,∴.故选B.【点睛】本题考查旋转的性质以及三角板的特点.利用数形结合的思想是解答本题的关键.2、A【解析】【分析】直接利用二次根式中的被开方数是非负数,求出答案即可.【详解】解:∵在实数范围内有意义,∴3-x≥0,∴x≤3,故选:A【点睛】本题考查二次根式有意义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.3、C【解析】【详解】解:选项A,B中的图形是轴对称图形,不是中心对称图形,故A,B不符合题意;选项C中的图形既是轴对称图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意,故选C【点睛】本题考查的是轴对称图形与中心对称图形的识别,把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形,掌握“轴对称图形与中心对称图形的定义”是解本题的关键.4、B【解析】【分析】由菱形的性质得OA=OC=6,OB=OD,AC⊥BD,则AC=12,再由直角三角形斜边上的中线性质求出BD的长度,然后由菱形的面积公式求解即可.【详解】解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH=2×4=8,∴菱形ABCD的面积=故选:B.【点睛】本题主要考查了菱形的性质,直角三角形的斜边上的中线性质,菱形的面积公式等知识;熟练掌握菱形的性质,求出BD的长是解题的关键.5、D【解析】【分析】先根据勾股定理求出OA的长,再根据①AP=PO;②AO=AP;③AO=OP分别算出P点坐标即可.【详解】解:点A的坐标是(2,2),根据勾股定理可得:OA==,①若AP=PO,可得:P(2,0),②若AO=AP可得:P(4,0),③若AO=OP,可得:P(,0)或(-,0),故点P的坐标不可能是:(3,0).故选:D.【点睛】此题主要考查了坐标与图形的性质,等腰三角形的判定,勾股定理,关键是掌握等腰三角形的判定:有两边相等的三角形是等腰三角形,再分情况讨论.6、A【解析】【分析】根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.【详解】解:∵四边形ABCD为矩形,∴DC=AB=8;∠B=∠C=90°;由题意得:AF=AD=BC=10,由勾股定理得:BF2=AF2-AB2=102-82,∴BF=6,∴CF=BC-BF=10-6=4;设EF=DE=x,EC=8-x;在Rt△EFC中,由勾股定理得:x2=42+(8-x)2,解得:x=5,∴EF=DE=5,∴EC=CD-DE=8-5=3,故选:A.【点睛】本题主要考查了翻折变换的性质、勾股定理;运用勾股定理得出方程是解决问题的关键.7、D【解析】【分析】根据直角三角形的性质求出EF,进而求出DE,根据三角形中位线定理计算,得到答案.【详解】解:∵∠AFC=90°,点E是AC的中点,AC=10,∴EF=AC=×10=5,∵DF=1,∴DE=DF+EF=6,∵点D、E分别是AB、AC的中点,∴BC=2DE=12,故选:D.【点睛】本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8、D【解析】【分析】分两种情况讨论:若,则,;若,则厘米,厘米;【详解】解:①当点的运动速度与点的运动速度都是2厘米/秒,若,,∵厘米,厘米,∴厘米,∴厘米,∴运动时间(秒);②当点的运动速度与点的运动速度不相等,∴,∵,∴要使与全等,只要厘米,厘米即可.∴点,运动的时间(秒),故选:D.【点睛】本题主要考查了正方形的性质以及全等三角形的判定,解决问题的关键是掌握:正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.解题时注意分类思想的运用.二、填空题1、50【解析】【分析】设香肠、腊肉、腊排骨、腊猪脚四种腊味的单价分别为每袋元,元,元,元,再列方程组,分别用含的代数式再利用都为正整数,且求解的范围,从而可得答案.【详解】解:设香肠、腊肉、腊排骨、腊猪脚四种腊味的单价分别为每袋元,元,元,元,则由①②得:由②③得:则把代入①可得:都为正整数,且当时,则或当时,不合题意,舍去,当时,符合题意,此时,所以:腊排骨每袋50元.故答案为:50【点睛】本题考查的是方程组的应用,方程组的正整数解问题,一元一次不等式组的应用,熟练的利用方程组与不等式组解决实际问题是解本题的关键.2、【解析】【分析】观察图象知,直线的图象位于直线的图象上方或两直线相交时,函数的函数值大于或等于函数的函数值,从而可求得的解.【详解】由图象知:不等式的解为故答案为:【点睛】本题考查了两直线相交与一元一次不等式的关系,数形结合是关键.3、【解析】【分析】先估算出k的值,再代入化简即可.【详解】故答案为:【点睛】本题考查无理数的估算、分母有理化,掌握二次根式的运算法则是得出正确答案的前提.4、-8【解析】【分析】根据勾股定理和坐标的性质,分别计算得、、,结合∠BAC=90°,根据勾股定理的性质计算,即可得到答案.【详解】根据题意,得:∵∠BAC=90°∴∴∴∴故答案为:-8.【点睛】本题考查了勾股定理、直角坐标系的知识;解题的关键是熟练掌握勾股定理的性质,从而完成求解.5、>【解析】【分析】根据同类项的定义列出方程,解方程求得m、n的值,再代入计算即可得到答案.【详解】解:因为单项式和是同类项,所以,,代入得,因为任何不等于0的数的0次幂都等于1,且,所以,,故答案为:.【点睛】本题考查了算术平方根、零指数幂、同类项的概念.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.6、或或【解析】【分析】分三种情况讨论,由等腰三角形的性质和勾股定理可求正方形ADEF的边长.【详解】解:若BE=EF,当点B与点D重合时,AD=AB=5,舍去,当点B与点D不重合时,如图,过点E作EH⊥DB于H,∵∠EDH+∠ADB=90°,∠ADB+∠DAB=90°,∴∠EDH=∠DAB,且AD=DE,∠EHD=∠ABD=90°,∴△ADB≌△DEH(AAS),∴DH=AB=5,∵BE=EF,EF=DE,∴DE=BE,且EH⊥DB,∴DH=BH=5,∴DB=10,∴AD=;当BE=BF时,∴∠BEF=∠BFE,∴∠DEB=∠AFB,且DE=AF,BE=BF,∴△DEB≌△AFB(AAS),∴DB=AB=5,∴AD=;若BF=EF,如图,过点F作FH⊥AB于H,∵∠DAB+∠FAB=90°,且∠DAB+∠BDA=90°,∴∠BDA=∠FAB,且AD=AF,∠ABD=∠AHF=90°,∴△ABD≌△FHA(AAS),∴AH=DB,∵EF=BF,EF=AF,∴BF=AF,且FH⊥AB,∴AH=BH=,∴DB=,∴AD==,故答案为:或或.【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.7、
(4,7)
(2n-1,2n-1)【解析】【分析】先由点B1(1,1)得到点A1的坐标,然后由B2(2,3)得到A2的坐标,进而得到直线的解析式,再令y=3求得点A3的坐标,从而求得点B3的坐标,⋯,再依次求得点Bn的坐标.【详解】解:∵点B1(1,1),B2(2,3),∴点A1(1,0),A2(2,1),将点A1(1,0),A2(2,1)代入y=kx+b得,,解得:,∴直线的解析式为y=x-1,令y=3得,x-1=3,∴x=4,∴点A3的坐标为(4,3),∴A3B3=4,∴B3的坐标为(4,7),令y=7得,x-1=7,∴x=8,∴点A4的坐标为(8,7),∴A4B4=8,∴B4的坐标为(8,15),⋯,∴点Bn的坐标为(2n-1,2n-1),故答案为:(4,7),(2n-1,2n-1).【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质,解题的关键是通过一次函数图象上点的坐标特征求得系列点B的坐标.三、解答题1、【解析】【分析】按照二次根式的化简方法,零指数法则,绝对值的意义,负指数幂的法则进行化简后即可得到答案.【详解】解:【点睛】本题考查了幂的运算法则、绝对值的化简、二次根式的化简等内容,关键是熟练掌握各种运算的方法.2、(1)60°或15°(2)135°(3)105°<∠AIC<150°【解析】【分析】(1)分AP=BP和AP=BP两种情况讨论,计算即可求解;(2)当AP取最小值时PD取最大值,此时AP与BC垂直,利用角平分线的定义以及三角形内角和定理即可求解;(3)设∠BAP=α,利用角平分线的定义得到∠IAC=∠PAC,∠ICA=∠PCA,利用三角形内角和定理即可求解.(1)解:当AP=BP时,∵∠B=30°,∴∠B=∠BAP=30°,∵∠BAC=90°,∴∠PAC=90°-30°=60°;当AB=BP时,∵∠B=30°,∴∠APB=∠BAP=(180°-30°)=75°,∵∠BAC=90°,∴∠PAC=90°-75°=15°;综上,∠PAC的度数为60°或15°;(2)解:∵AD长为定值,∴当AP取最小值时PD取最大值,此时AP与BC垂直,∵∠B=30°,∠BAC=90°,∴∠ACP=60°,∠CAP=30°,∵AI、CI分别平分∠PAC,∠PCA,∴∠ICA=∠ACP=30°,∠IAC=∠CAP=15°,∴∠AIC的度数为180°-30°-15°=135°;(3)解:设∠BAP=α,则∠APC=α+30°,∵AB⊥AC,∴∠BAC=90°,∠PCA=60°,∠PAC=90°−α,∵AI、CI分别平分∠PAC,∠PCA,∴∠IAC=∠PAC,∠ICA=∠PCA,∴∠AIC=180°−(∠IAC+∠ICA)=180°−(∠PAC+∠PCA)=180°−(90°−α+60°)=α+105°.∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°.【点睛】本题考查了三角形内角和定理,角平分线的定义,解答本题的关键是明确题意,找出所求问题需要的条件.3、(1)(2)(3)或10【解析】【分析】(1)根据折叠知,,根据三角形内角和定理即可求得答案;(2)根据,由等边对等角可得,设度,根据三角形内角和为180°,建立一元一次方程解方程求解即可求得,过作于,根据勾股定理求得,根据含30度角的直角三角形的性质即可求得的长;(3)①当点在上方时,②当点在下方时,设,则,勾股定理求解即可;(1)由折叠知,,同理得,∴.(2)如图,∵,∴,设度,∵,∴度,∴,解得,即,过作于,∵,∴,∴.(3)当点在上方时,如图3-1∵,,直线,∴,设,则,又由折叠知:,,∴,在中,根据勾股定理,得解得,即;当点在下方时,如图3-2由折叠知:,,∴,设,则,在中,根据勾股定理,得,解得,即.【点睛】本题考查了折叠的性质,三角形内角和定理,等边对等角求角度,勾股定理,分类讨论是解题的关键.4、(1)288,356(2)小明每天读28页,小红每天读40页(3)小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过【解析】【分析】(1)第一天两人一共读了152-84=68页,故第三天页码之和=220+68=288页,第四天页码之和=288+68=356页;(2)小明每天读x页,小红每天读y页.由题意列得议程组,解方程组即可解决问题;(3)从第6天起,小明至少平均每天要比原来多读m页.由题意:84+28×5+5(28+m)-10×40≥0,解不等式即可解决问题.(1)解:第一天两人一共读了152-84=68页,故第三天页码之和=220+68=288页,第四天页码之和=288+68=356页,故答案为:288,356.(2)解:小明每天读x页,小红每天读y页,由题意,解得,答:小明每天读28页,小红每天读40页;(3)解:从第6天起,小明至少平均每天要比原来多读m页.由题意:84+28×5+5(28+m)-10×40≥0,解得m≥7.2,∵m是整数,∴m=8,∴小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过.【点睛】本题考查了一元一次不等式、二元一次方程组等知识,解题的关键是读懂表格中的信息,学会利用参数构建方程组或不等式解决问题.5、(1)见解析(2)6,【解析】【分析】(1)作的平分线交AC于点Q,作线段BQ的垂直平分线交AB于点P,由角平分线及中垂线的性质可得,,得出,根据平行线的判定可得,,得出PQ为点P到AC的距离,且满足条件;(2)由勾股定理可得,过Q作QH⊥AB,垂足为H,根据角平分线的性质可得,依据全等三角形的判定和性质可得,,得出,设,则,利用勾股定理得出,设,则,在中,继续利用勾股定理求解即可得.(1)解:作的平分线交AC于点Q,作线段BQ的垂直平分线交AB于点P,∴,,∴,∴,∴,且,满足条件;(2)解:在中,,过Q作QH⊥AB,垂足为H,∵BQ平分,∴,在与中,,∴,∴,∴,设,则,在中,,即,解得:,∴,设,则,在中,,即,解得:,∴BP的长为,故答案为:6;.【点睛】题目主要考查作角平分线、垂直平分线及其性质,勾股定理,全等三角形的判定和性质等,理解题意,作出图形,综合运用这些知识点是解题关键.6、(1)A,B两种健身器材的单价分别是240元,360元(2)购买A种健身器材12件B种健身器材48件时费用最小【解析】【分析】(1)设A种健身器材的单价为x元/件,B种健身器材的单价为1.5x元/件,根据“用6000元购买A种健身器材比用3600元购买B种健身器材多15件”,列出分式方程,解之即可得出结论;(2)设购买A种健身器材m件,则购买B种的健身器材(60-m)件,B种健身器材的数量不少于A种健身器材的4倍列出不等式和购买两种器材的费用列出函数关系式然后进行讨论即可.(1)设A种健身器材的单价为x元,B种健身器材的单价为1.5x元,根据题意得:﹣=15,解得:x=240,经检验x=240是原方程的解,且符合题意,则1.5×240=360(元),答:A,B两种健身器材的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新生儿高胆红素血症与热性惊厥护理知识测试题附答案
- 北师大版七年级数学上册《5.1认识方程》同步练习题及答案
- 2025年襄阳初中入学试卷及答案
- 2025年江苏污水处理试题及答案
- 2025年建筑资质考试试题及答案
- 老师班级模拟考试题及答案
- 团员考核知识题库及答案
- 化学物质性质(如漂白性)辨析试题
- 化学方程式中物质的量计算试题
- 2025年高考物理整体法与隔离法应用试题
- 2025年上海市高考英语热点复习:六选四句子还原之说明文(上)
- 吉林地区普通高中2023-2024学年高三年级上学期数学第一次模拟试卷(含答案)
- 电话接线员培训
- 初中物理实验探究式教学策略研究结题报告
- 药品经营质量管理规范
- 甲状腺消融手术
- 2024年秋季新教材三年级上册PEP英语教学课件:含视频音频U3-第1课时-A
- 公安涉警舆情课件
- 医院培训课件:《类风湿关节炎的治疗与康复》
- DB34∕T 3790-2021 智慧药房建设指南
- 实验小学六年级上学期素养竞赛语文试卷(有答案)
评论
0/150
提交评论