难点详解江西省瑞昌市中考数学真题分类(数据分析)汇编专项攻克试题_第1页
难点详解江西省瑞昌市中考数学真题分类(数据分析)汇编专项攻克试题_第2页
难点详解江西省瑞昌市中考数学真题分类(数据分析)汇编专项攻克试题_第3页
难点详解江西省瑞昌市中考数学真题分类(数据分析)汇编专项攻克试题_第4页
难点详解江西省瑞昌市中考数学真题分类(数据分析)汇编专项攻克试题_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省瑞昌市中考数学真题分类(数据分析)汇编专项攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是(

)A.6,6 B.4,6 C.5,6 D.5,52、下列说法正确的是(

)A.“每天太阳从西边出来”是随机事件;B.为了解全国中学生视力和用眼卫生情况,适宜采用全面调查;C.甲、乙两人射中环数的方差分别是,,说明甲的射击成绩更稳定;D.数据4,3,5,5,2的中位数是4.3、甲、乙、丙、丁四名学生参加市中小学生运动会跳高项目预选赛,他们8次跳高的平均成绩及方差如表所示,要选一位成绩较好且稳定的运动员去参赛,应选运动员(

)甲乙丙丁(米)1.721.751.751.72(米)11.311.3A.甲 B.乙 C.丙 D.丁4、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(

)A.众数 B.方差 C.平均数 D.中位数5、一组数据4、5、6、a、b的平均数为5,则a、b的平均数为(

)A.4 B.5 C.8 D.106、方差是刻画数据波动程度的量.对于一组数据,,,…,,可用如下算式计算方差:,其中“5”是这组数据的()A.最小值 B.平均数 C.中位数 D.众数7、甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2 B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2 D.甲<乙,s甲2<s乙28、为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的(

)A.平均数 B.中位数 C.众数 D.方差第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、根据第七次全国人口普查,华东六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.2、若一组数据1、-2、3、0,则这组数据的极差为______.3、一组数据:0,1,2,3,3,5,5,10的中位数是________.4、某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此实际平均数与求出的平均数的差为_________.5、有10个数,前8个数的平均数是40,后2个数的平均数是36,这10个数的平均数是______.6、在某次公益活动中,小明对本班同学的捐款情况进行统计,绘制成了如图所示的不完整的统计图,其中捐100元的人数占全班总人数的25%,则本次捐款的中位数是_________.7、某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进行综合评分.下表是各小组其中一周的得分情况:组别一二三四五六七八得分9095908890928590这组数据的众数是_____.三、解答题(7小题,每小题10分,共计70分)1、某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3;5;3;6;3;4;4;5;2;4;5;6;1;3;5;5;4;4;2;4根据以上数据,得到如下不完整的频数分布表:次数123456人数12a6b2(1)表格中的________,________;(2)在这次调查中,参加志愿者活动的次数的众数为________,中位数为________;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.2、车间有20名工人,某天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?3、近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.使用次数012345人数11152328185(1)这天部分出行学生使用共享单车次数的中位数是,众数是,该中位数的意义是;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?4、我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.5、杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成如下统计图表(数据分组包含左端值不包含右端值).甲组杨梅树落果率频数分布表落果率组中值频数(棵)0≤x<10%5%1210%≤x<20%15%420%≤x<30%25%230%≤x<40%35%140%≤x<50%45%1乙组杨梅树落果率频数分布直方图(1)甲、乙两组分别有几棵杨梅树的落果率低于20%?(2)请用落果率的中位数或平均数,评价市农科所“用防雨布保护杨梅果实”的实际效果;(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.6、小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:.小云所住小区5月1日至30日的厨余垃圾分出量统计图:.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为(结果取整数)(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为5月11日至20日的厨余垃圾分出量的方差为,5月21日至30日的厨余垃圾分出量的方差为.直接写出的大小关系.7、一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的折线统计图如下:(1)请补充完成下面的成绩统计分析表:平均分方差中位数合格率优秀率甲组(

)3.76(

)90%30%乙组7.2(

)7.580%20%(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组;但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由.-参考答案-一、单选题1、D【解析】【分析】将这7个数从小到大排列,第4个数就是这组数的中位数.出现次数最多的数即是众数.【详解】将这7个数从小到大排列:4、5、5、5、6、7、9,第4个数为5,则这组数的中位数为:5,出现次数最多的数是5,故这组数的众数是5,故选:D.【考点】本题考查了中位数、众数的定义,充分理解中位数、众数的定义是解答本题的基础.2、D【解析】【分析】根据随机事件的定义,普查的定义,方差的大小,中位数的定义依次判断.【详解】解:A、“每天太阳从西边出来”是不可能事件,不符合题意;B、为了解全国中学生视力和用眼卫生情况,适宜采用全面调查抽样调查,故不符合题意;C、甲、乙两人射中环数的方差分别是,,说明乙的射击成绩更稳定,故不符合题意;D、数据4,3,5,5,2的中位数是4,故符合题意;故选:D.【考点】此题考查了随机事件的定义,普查的定义,方差的大小,中位数的定义,理解各定义是解题的关键.3、C【解析】【分析】根据平均数和方差的意义即可得.【详解】解:方差越小,成绩越稳定,由表中的方差可知,应该选择甲或丙,又甲的平均成绩为,丙的平均成绩为,要选一位成绩较好且稳定的运动员去参赛,应选运动员丙,故选:C.【考点】本题考查了利用平均数和方差进行决策,掌握理解平均数和方差的意义的是解题关键.4、D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:D.【考点】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.5、B【解析】【分析】先根据平均数的公式可得的值,再根据平均数的公式即可得.【详解】解:一组数据4、5、6、、的平均数为5,,解得,则、的平均数为,故选:B.【考点】本题考查了求平均数,熟记平均数的计算公式是解题关键.6、B【解析】【分析】根据方差公式的定义即可求解.【详解】方差中“5”是这组数据的平均数.故选B.【考点】此题主要考查平均数与方差的关系,解题的关键是熟知方差公式的性质.7、A【解析】【分析】分别计算平均数和方差后比较即可得到答案.【详解】解:(1)(8×4+9×2+10×4)=9;=(8×3+9×4+10×3)=9;s甲2=[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴,s甲2>s乙2,故选:A.【考点】本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、B【解析】【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可.【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了,故选B.【考点】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.二、填空题1、【解析】【分析】由图,将六省60岁及以上人口占比由小到大排列好,共有6个数,所以中位数等于中间两个数之和除以二.【详解】解:由图,将六省人口占比由小到大排列为:,由中位数的定义得:人口占比的中位数为,故答案为:.【考点】本题考查了求解中位数,解题的关键是:将数由小到大排列,根据数的个数分为两类.当个数为奇数时,中位数等于最中间的数;当个数为偶数个时,中位数等于中间两个数之和除以2.2、【解析】【分析】极差:一组数据的最大值与最小值的差,利用概念直接可得答案.【详解】解:这组数据的极差为:故答案为:【考点】本题考查的是极差的概念,利用极差的概念求解数据的极差是解题的关键.3、3【解析】【分析】根据中位数的定义先把这组数据从小到大排列,然后求出最中间的两个数的平均数即可.【详解】将这组数据从小到大排列为:0,1,2,3,3,5,5,10.最中间的两个数的平均数是故填:3【考点】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).4、3【解析】【分析】在输入的过程中错将其中一个数据105输入为15少输入90,在计算过程中共有30个数,所以少输入的90对于每一个数来说少3,实际平均数与求出的平均数的差即可求出.【详解】∵在输入的过程中错将其中一个数据105输入为15少输入90,而∴平均数少3,实际平均数与求出的平均数的差为3,故答案为:3.【考点】本题考查平均数的性质,求数据的平均值是研究数据常做的,平均值反映数据的平均水平,可以准确的把握数据的情况.5、39.2【解析】【分析】利用平均数的意义求出10个数的和,然后计算它们的平均数.【详解】解:由题意可知,这10个数的平均数为,故答案为:.【考点】本题考查了平均数的含义和求法,关键是求出这10个数据的和,然后再根据定义求解,本题属于基础题.6、20【解析】【分析】根据捐款100元的人数占全班总人数的25%求得总人数,然后确定捐款20元的人数,然后确定中位数即可.【详解】∵捐100元的15人占全班总人数的25%,∴全班总人数为15÷25%=60(人).∴捐款20元的有60﹣20﹣15﹣10=15(人).∴根据中位数的概念,中位数是第30和第31人的平均数,均为20元.∴中位数为20元,故答案为20.7、90【解析】【分析】根据众数的概念:众数是一组数据中出现次数最多的数可得出答案.【详解】解:90出现了4次,出现的次数最多,则众数是90;故答案为90【考点】此题考查了众数,注意中位数和众数的区别,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.三、解答题1、(1)4,5;(2)4次;4次;(3)90人.【解析】【分析】(1)观察所给数据即可得到a,b的值;(2)根据众数和中位数的概念求解即可;(3)用300乘以样本中参加志愿者活动的次数为4次的百分比即可得到结论.【详解】解:(1)根据所给数据可知,参加3次志愿活动的有4人,参加5次志愿活动的有5人,所以,a=4,b=5故答案为:4,5;(2)完成表格如下次数123456人数124652由表格知,参加4次志愿活动的的人数最多,为6人,∴众数是4次20个数据中,最中间的数据是第10,11个,即4,4,∴中位数为(次)故答案为:4次;4次;(3)20人中,参加4次志愿活动的有6人,所占百分比为,所以,∴该校初三年级学生参加志愿者活动的次数为4次的人数为:(人)答:该校初三年级学生参加志愿者活动的次数为4次的人数为90人.【考点】本题考查众数、中位数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.2、(1)这一天20名工人生产零件的平均个数为13个;(2)定额为11个时,有利于提高大多数工人的积极性.【解析】【分析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数和获奖人数情况,从而得出结论.【详解】解:(1)(个)答:这一天20名工人生产零件的平均个数为13个.(2)中位数为12个,众数为11个.当定额为13个时,有8个达标,6人获奖,不利于提高工人的积极性.当定额为12个时,有12个达标,8人获奖,不利于提高大多数工人的积极性.当定额为11个时,有18个达标,12人获奖,有利于提高大多数工人的积极性.∴当定额为11个时,有利于提高大多数工人的积极性.【考点】此题考查了平均数、众数、中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.3、(1)3、3、表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)这天部分出行学生平均每人使用共享单车约2次;(3)估计这天使用共享单车次数在3次以上(含3次)的学生有765人.【解析】【详解】【分析】(1)根据中位数和众数的定义进行求解即可得;(2)根据加权平均数的公式列式计算即可;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生所占比例即可得.【详解】(1)∵总人数为11+15+23+28+18+5=100,∴中位数为第50、51个数据的平均数,即中位数为=3次,众数为3次,其中中位数表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次),故答案为3、3、表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)≈2(次),答:这天部分出行学生平均每人使用共享单车约2次;(3)1500×=765(人),答:估计这天使用共享单车次数在3次以上(含3次)的学生有765人.【考点】本题考查了中位数、众数、平均数、用样本估计总体等,熟练掌握中位数、众数、平均数的定义以及求解方法是解题的关键.4、(1)平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.(2)根据平均数和中位数的统计意义分析得出即可.(3)分别求出初中、高中部的方差比较即可.【详解】解:(1)初中部5名选手的成绩分别为:75,80,85,85,100,初中部的平均数为:(分),85出现的次数最多,所以初中部5名选手的成绩的众数为85,高中部5名选手的成绩按从小到大排列为:70,75,80,100,100,所以高中部5名选手的成绩的中位数为80;填表如下:平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,∴<,因此,初中代表队选手成绩较为稳定.【考点】此题考查了众数,中位数和平均数以及方差的求解,解题的关键是熟练掌握众数,中位数和平均数以及方差的求法.5、(1)甲、乙两组分别有16棵和2棵杨梅树的落果率低于20%;(2)“用防雨布保护杨梅果实”大大降低了杨梅树的落果率,理由见详解;(3)该果园的杨梅树全部加装这种防雨布,落果率可降低21%.【解析】【分析】(1)根据频数直方图和频数统计表,直接求解即可;(2)分别求出甲乙两组杨梅树落果率的组中值的中位数,即可得到结论;(3)分别求出甲乙两组杨梅的落果率的平均数,即可得到答案.【详解】解:(1)12+4=16(棵),1+1=2(棵),答:甲、乙两组分别有16棵和2棵杨梅树的落果率低于20%;(2)∵甲组杨梅树落果率的组中值从小到大排列:5%,5%,5%,5%,5%,5%,5%,5%,5%,5%,5%,5%,15%,15%,15%,15%,25%,25%,35%,45%,∴甲组杨梅树落果率的组中值的中位数为:5%,∵乙组杨梅树落果率的组中值从小到大排列:5%,15%,25%,25%,25%,35%,35%,35%,35%,35%,35%,35%,35%,35%,35%,45%,45%,45%,45%,4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论