




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《轴对称》专题测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③ B.①②④ C.①③④ D.①②③④2、如图,E是∠AOB平分线上的一点.于点C,于点D,连结,则(
)A.50° B.45° C.40° D.25°3、如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=(
)A.50° B.100° C.120° D.130°4、如图,在中,,,点是边上任意一点,过点作交于点,则的度数是(
).A. B. C. D.5、如图,已知AB=AC=BD,那么∠1与∠2之间的关系是()A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180° D.3∠1-∠2=180°第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,点D是的平分线OC上一点,过点D作交射线OA于点E,则线段DE与OE的数量关系为:DE______OE(填“>”或“=”或“<”).2、如图,在中,,分别以点为圆心,大于的长为半径画弧,两弧相交于点作直线,交边于点,连接,则的周长为________.3、如图,在△ABC中,AD⊥BC,垂足为点D,CE是边AB上的中线,如果CD=BE,∠B=40°,那么∠BCE=_____度.4、点(3,0)关于y轴对称的点的坐标是_______5、一辆汽车的牌照在车下方水坑中的像是,则这辆汽车的牌照号码应为_____.三、解答题(5小题,每小题10分,共计50分)1、如图,是边长为3的等边三角形,是等腰三角形,且,以为顶点作一个角,使其两边分别交于点,交于点,连接,求的周长.2、如图,在中,,.(1)在线段上找到一个点,使得.(尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,连接,求证:是等边三角形.3、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E.求证:△AED是等腰三角形.4、如图,在四边形中,,,分别是,上的点,连接,,.(1)如图①,,,.求证:;
(2)如图②,,当周长最小时,求的度数;(3)如图③,若四边形为正方形,点、分别在边、上,且,若,,请求出线段的长度.5、平面直角坐标系中,点坐标为,分别是轴,轴正半轴上一点,过点作轴,,点在第一象限,,连接交轴于点,,连接.(1)请通过计算说明;(2)求证;(3)请直接写出的长为.-参考答案-一、单选题1、D【解析】【分析】根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.【详解】解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=(180°-∠ACB)=(180°-90°)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD(ASA),∴PH=PD,故③正确.连接CP,如下图所示:∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确,综上所述,①②③④均正确,故选:D.【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.2、A【解析】【分析】根据角平分线的性质得到ED=EC,得到∠EDC=,求出,利用三角形内角和定理求出答案.【详解】解:∵OE是的平分线,,,∴ED=EC,,∴∠EDC=,∴,∴,故选:A.【考点】此题考查了角平分线的性质定理,等腰三角形的性质,三角形内角和定理,熟记角平分线的性质定理是解题的关键.3、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【详解】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选:B.【考点】本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4、B【解析】【分析】根据等腰三角形的性质可得∠B=∠C,进而可根据三角形的内角和定理求出∠A的度数,然后根据平行线的性质可得∠DEC=∠A,进一步即可求出结果.【详解】解:∵,,∴∠B=∠C=65°,∴∠A=180°-∠B-∠C=50°,∵DF∥AB,∴∠DEC=∠A=50°,∴∠FEC=130°.故选:B.【考点】本题考查了等腰三角形的性质、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题的关键.5、D【解析】【分析】根据等腰三角形的性质和三角形的内角和定理可得∠B=180°-2∠1=∠C,根据三角形的外角性质可得∠C=∠1-∠2,进一步即得答案.【详解】解:∵AB=AC=BD,∴∠BAD=∠1,∠B=∠C,∴∠B=180°-2∠1=∠C,∵∠C=∠1-∠2,∴180°-2∠1=∠1-∠2,∴3∠1-∠2=180°.故选:D.【考点】本题考查了等腰三角形的性质、三角形的内角和定理和三角形的外角性质等知识,属于基本题型,熟练掌握上述知识是解题的关键.二、填空题1、=【解析】【分析】首先由平行线的性质求得∠EDO=∠DOB,然后根据角平分线的定义求得∠EOD=∠DOB,最后根据等腰三角形的判定和性质即可判断.【详解】解:∵ED∥OB,∴∠EDO=∠DOB,∵D是∠AOB平分线OC上一点,∴∠EOD=∠DOB,∴∠EOD=∠EDO,∴DE=OE,故答案为:=.【考点】本题主要考查的是平行线的性质、角平分线的定义以及等角对等边,根据平行线的性质和角平分线的定义求得∠EOD=∠EDO是解题的关键.2、【解析】【分析】由题意可得MN为AB的垂直平分线,所以AD=BD,进一步可以求出的周长.【详解】∵在中,分别以A、B为圆心,大于的长为半径画弧,两弧交于M,N,作直线MN,交BC边于D,连接AD;∴MN为AB的垂直平分线,∴AD=BD,∴的周长为:AD+DC+AC=BC+AC=13;故答案为13.【考点】本题主要考查的是垂直平分线的运用,掌握定义及相关方法即可.3、20.【解析】【分析】连接ED,再加上AD⊥BC,利用直角三角形斜边上的中线等于斜边的一半,很容易可以推出△ECD为等腰三角形,根据等腰三角形的性质:等边对等角,以及外角性质即可求出∠BCE的度数.【详解】如图,连接ED,∵AD⊥BC,∴△ABD是直角三角形,∵CE是边AB上的中线,∴ED=AB=BE,∴∠EDB=∠B=40°,又∵CD=BE,∴ED=CD,∴∠DEC=∠DCE,∵∠EDB是△DEC的外角,∴∠EDB=∠DEC+∠DCE=2∠DCE=40°,∴∠DCE=∠EDB=20°,∵∠DCE即∠BCE,∴∠BCE=20°.【考点】本题考查的是直角三角形的性质,等腰三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.4、(-3,0)【解析】【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴对称的点的坐标为(-3,0).故答案为:(-3,0).【考点】本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5、H•8379【解析】【分析】易得所求的牌照与看到的牌照关于水平的一条直线成轴对称,作出相应图形即可求解.【详解】解:如图所示:该车牌照号码为:H•8379.故答案为:H•8379.【考点】本题考查轴对称的应用,熟练掌握轴对称的性质是解题关键.三、解答题1、的周长为6.【解析】【分析】要求△AMN的周长,根据题目已知条件无法求出三条边的长,只能把三条边长用其它已知边长来表示,所以需要作辅助线,延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CDN,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.【详解】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.【考点】此题主要利用等边三角形和等腰三角形的性质来证明三角形全等,构造另一个三角形是解题的关键.2、(1)见解析;(2)见解析【解析】【分析】(1)作线段AC的垂直平分线即可;(2)根据线段垂直平分线的性质可得DA=DC,根据等边对等角可得∠CAD=∠C,进而可得∠ADB=∠B=∠DAB=60°,然后可得答案.(1)解:如图所示:(2)∵∠BAC=90°,∠C=30°∴∠B=60°,又∵点D在AC的垂直平分线上,∴DA=DC,∴∠CAD=∠C=30°,∴∠DAB=60°,∴∠ADB=∠B=∠DAB=60°,即△ABD是等边三角形.【考点】此题主要考查了基本作图,以及线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.3、见解析【解析】【分析】根据等腰三角形的性质得到∠BAD=∠CAD,根据平行线的性质得到∠ADE=∠BAD,等量代换得到∠ADE=∠CAD于是得到结论.【详解】解:∵△ABC是等腰三角形,AB=AC,AD是底边BC上的中线,∴∠BAD=∠CAD,∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=∠CAD,∴AE=ED,∴△AED是等腰三角形.【考点】本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.4、(1)见解析;(2);(3).【解析】【分析】(1)延长到点G,使,连接,首先证明,则有,,然后利用角度之间的关系得出,进而可证明,则,则结论可证;(2)分别作点A关于和的对称点,,连接,交于点,交于点,根据轴对称的性质有,,当点、、、在同一条直线上时,即为周长的最小值,然后利用求解即可;(3)旋转至的位置,首先证明,则有,最后利用求解即可.【详解】(1)证明:如解图①,延长到点,使,连接,在和中,.,,,,.,在和中,.,;(2)解:如解图,分别作点A关于和的对称点,,连接,交于点,交于点.由对称的性质可得,,此时的周长为.当点、、、在同一条直线上时,即为周长的最小值.,.,,;(3)解:如解图,旋转至的位置,,,.在和中,...【考点】本题主要考查全等三角形的判定及性质,轴对称的性质,掌握全等三角形的判定及性质是解题的关键.5、(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)先根据点A坐标可得OA的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诺如呕吐包培训知识课件
- 请你到我家玩课件
- 说课课件精美句子简短
- 误食异物安全知识培训
- 2025小学聘用校长合同示范文本
- 2025制作购销合同书
- 2025企业合同范本:是否可以要求所有员工签订全勤劳动合同
- 2025石墨销售合同模板
- 2025初中语文生活美文:婚姻如合同爱情似艺术
- 2025车辆买卖合同模板
- 学校食堂菜谱及定价方案
- 万象城商业年终总结
- 人教版四年级数学上册【全册教案】
- 个人开车与单位免责协议书经典版
- 劳动关系协调师竞赛技能竞赛考试题及答案
- 小学体育与健康教学设计-中华武术:五步拳 |人教版
- 八年级上册湖南地方文化常识教案
- 《第2课 多样的数据》参考课件1
- 十年(2015-2024)高考真题数学分项汇编(全国)专题02 复数(教师卷)
- 神经源性肠道功能障碍的康复护理
- QB/T 8006-2024 年糕 国家标准(正式版)
评论
0/150
提交评论