




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》专题训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在ABC和BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于(
)A.∠EDB B.∠BED C.∠AFB D.2∠ABF2、作平分线的作图过程如下:作法:(1)在和上分别截取、,使.(2)分别以,为圆心,大于的长为半径作弧,两弧交于点.(3)作射线,则就是的平分线.用下面的三角形全等的判定解释作图原理,最为恰当的是(
)A. B. C. D.3、如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:54、在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是(
)A.点M B.点N C.点P D.点Q5、作的平分线时,以O为圆心,某一长度为半径作弧,与OA,OB分别相交于C,D,然后分别以C,D为圆心,适当的长度为半径作弧使两弧在的内部相交于一点,则这个适当的长度(
)A.大于 B.等于 C.小于 D.以上都不对第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,则∠C1=______°.2、如图,平分,.填空:因为平分,所以________.从而________.因此________.3、如图,PM⊥OA,PN⊥OB,∠BOC=30°,PM=PN,则∠AOB=_________.4、如图,在中,D是上的一点,,平分,交于点E,连接,若,,则_______.5、如图,在△ABC中,已知AD是△ABC的角平分线,作DE⊥AB,已知AB=4,AC=2,△ABD的面积是2,则△ADC的面积为___.三、解答题(5小题,每小题10分,共计50分)1、如图,已知△ABC.求作:BC边上的高与内角∠B的角平分线的交点.2、如图,已知,.求证:.3、如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B作BFAE交ED于F,且EM=FM.(1)若AE=5,求BF的长;(2)若∠AEC=90°,∠DBF=∠CAE,求证:CD=FE.4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.5、如图,在△ABC中,BC=AB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAB=30°,求∠ACF的度数.-参考答案-一、单选题1、C【解析】【分析】根据全等三角形的判定与性质可得=,再根据三角形外角的性质即可求得答案.【详解】解:在和中,,,,是的外角,,∴,故选:C.【考点】本题考查了全等三角形的判定与性质以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解决本题的关键.2、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明△OCE≌△OCD,即可得答案.【详解】∵分别以,为圆心,大于的长为半径作弧,两弧交于点;∴CE=CD,在△OCE和△OCD中,,∴△OCE≌△OCD(SSS),故选:A.【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键.3、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可得.【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,,,故选:C.【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键.4、A【解析】【分析】利用到角的两边的距离相等的点在角的平分线上进行判断.【详解】点P、Q、M、N中在∠AOB的平分线上的是M点.故选:A.【考点】本题主要考查了角平分线的性质,根据正方形网格看出∠AOB平分线上的点是解答问题的关键.5、A【解析】【分析】根据作已知角的角平分线的方法即可判断.【详解】因为分别以C,D为圆心画弧时,要保证两弧在的内部交于一点,所以半径应大于,故选:A.【考点】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).二、填空题1、30【解析】【分析】本题实际上是全等三角形的性质以及根据三角形内角和等于180°来求角的度数.【详解】∵△ABC≌△A1B1C1,∴∠C1=∠C,又∵∠C=180°-∠A-∠B=180°-110°-40°=30°,∴∠C1=∠C=30°.故答案为30.【考点】本题考查了全等三角形的性质;解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及三角形内角之间的关系联系起来.2、
【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由内错角相等可以得出两直线平行.【详解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(内错角相等,两直线平行).故答案为:∠CAB,∠CAB,DC.【考点】本题考查了平行线的判定定理以及角平分线的定义,解题的关键是找出∠CAB=∠2.解决该类题型只需牢牢掌握平行线的判定定理即可.3、60°或60度【解析】【分析】根据到角的两边距离相等的点在角的平分线上判断出OC平分∠AOB,再根据角平分线的定义可得∠AOB=2∠BOC.【详解】解:∵PM⊥OA,PN⊥OB,PM=PN,∴OC平分∠AOB,∴∠AOB=2∠BOC,又∠BOC=30°,∴∠AOB=60°.故答案为:60°.【考点】本题考查了角平分线的判定,掌握角平分线的判定是解题的关键.4、55°【解析】【分析】根据SAS证明△ACE≌△DCE,根据全等三角形的性质可得∠CDE=∠A=100°,再根据三角形外角的性质可求∠BED.【详解】解:∵CE平分∠ACB,∴∠ACE=∠DCE,在△ACE与△DCE中,,∴△ACE≌△DCE(SAS),∴∠CDE=∠A=100°,∵∠B=45°,∴∠BED=∠CDE-∠B=100°-45°=55°,故答案为:55°.【考点】本题考查了全等三角形的判定与性质,三角形外角的性质,关键是得到∠CDE=∠A=100°.5、1【解析】【分析】先根据三角形面积公式计算出DE=
1,再根据角平分线的性质得到点D到AB和AC的距离相等,然后利用三角形的面积公式计算△ADC的面积.【详解】DE⊥AB,S△ABD
=×
DE
×
AB
=
2,
DE==1,AD是△ABC的角平分线,点D到AB和AC的距离相等,点D到AC的距离为1,S△ADC
=×2×1=
1.故答案为:1.【考点】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,属于基础题,熟练掌握角平分线的性质是解题的关键.三、解答题1、详见解析.【解析】【分析】过点A作BC的垂线,作出∠B的平分线,二者交点即为所求的点.【详解】如图:∴P点即为所求【考点】本题考查了尺规作图,熟练掌握垂线和角平分线的作图步骤是解答本题的关键.2、见详解.【解析】【分析】根据SSS定理推出△ADB≌△BCA即可证明.【详解】证明:在△ADB和△BCA中,∴△ADB≌△BCA(SSS),∴.【考点】本题考查了全等三角形的性质和判定,能正确进行推理证明全等是解此题的关键.3、(1)BF=5;(2)见解析.【解析】【分析】(1)证明△AEM≌△BFM即可;(2)证明△AEC≌△BFD,得到EC=FD,利用等式性质,得到CD=FE.【详解】(1)∵BFAE,∴∠MFB=∠MEA,∠MBF=∠MAE,∵EM=FM,∴△AEM≌△BFM,∴AE=BF,∵AE=5,∴BF=5;(2)∵BFAE,∴∠MFB=∠MEA,∵∠AEC=90°,∴∠MFB=90°,∴∠BFD=90°,∴∠BFD=∠AEC,∵∠DBF=∠CAE,AE=BF,∴△AEC≌△BFD,∴EC=FD,∴EF+FC=FC+CD,∴CD=FE.【考点】本题考查了平行线的性质,三角形全等的判定和性质,等式的性质,熟练掌握平行线性质,灵活进行三角形全等的判定是解题的关键.4、见解析【解析】【分析】先在线段BC上截取BE=BA,连接DE,根据BD平分∠ABC,可得∠ABD=∠EBD,根据,可判定△ABD≌△EBD,根据全等三角形的性质可得:AD=ED,∠A=∠BED.再根据AD=CD,等量代换可得ED=CD,根据等边对等角可得:∠DEC=∠C.由∠BED+∠DEC=180°,可得∠A+∠C=180°.【详解】证明:在线段BC上截取BE=BA,连接DE,如图所示,∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.【考点】本题主要考查全等三角形的判定和性质,解决本题的关键是要熟练掌握全等三角形的判定和性质.5、(1)证明见解析(2)【解析】【分析】(1)由“HL”可证Rt△ABE≌Rt△CBF;(2)由AB=CB,∠ABC=90°,即可求得∠CAB与∠ACB的度数,即可得∠BAE的度数,又由Rt△ABE≌Rt△CBF,即可求得∠BCF的度数,则由∠ACF=∠BCF+∠ACB即可求得答案.(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025黑龙江绥化市安达市任民镇人民政府公益性岗位招聘1人考前自测高频考点模拟试题参考答案详解
- 2025年烟台市教育局所属事业单位卫生类岗位公开招聘工作人员(2人)考前自测高频考点模拟试题及答案详解(典优)
- 2025昆明市盘龙区拓东第二小学招聘(1人)模拟试卷及一套参考答案详解
- 2025福建省市场监督管理局直属事业单位招聘高层次人才20人模拟试卷及答案详解(夺冠)
- 2025年甘肃省民航机场集团校园招聘考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025河北中兴冀能实业有限公司高校毕业生招聘(第三批)考前自测高频考点模拟试题及答案详解1套
- 2025河南驻马店上蔡县第二高级中学教师招聘25人模拟试卷及答案详解(夺冠系列)
- 2025广东湛江市公安局经济技术开发区分局招聘警务辅助人员10人考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025菏泽曹县教育系统公开招聘初级岗位教师(166人)考前自测高频考点模拟试题含答案详解
- 2025内蒙古民航机场集团有限公司招聘考前自测高频考点模拟试题及一套完整答案详解
- 商业店铺施工方案
- 民法典之遗嘱继承课件
- 粮仓建筑施工管理办法
- 2025秋全体教师大会上,德育副校长讲话:德为根,安为本,心为灯,家为桥-这场开学讲话,句句都是育人的方向
- 急性肺水肿护理
- 2025-2030智慧养老行业竞争格局分析及投资前景与战略规划研究报告
- “十五五”城镇住房发展规划
- 合伙购买墓地协议书
- 医学综述研究进展汇报
- 2025年福建省泉州市中考二模历史试题(原卷版+解析版)
- “活动类”应用文框架+讲义-2025届高三英语二轮复习
评论
0/150
提交评论