难点解析-重庆市巴南中学7年级数学下册第四章三角形专项练习试卷(含答案详解版)_第1页
难点解析-重庆市巴南中学7年级数学下册第四章三角形专项练习试卷(含答案详解版)_第2页
难点解析-重庆市巴南中学7年级数学下册第四章三角形专项练习试卷(含答案详解版)_第3页
难点解析-重庆市巴南中学7年级数学下册第四章三角形专项练习试卷(含答案详解版)_第4页
难点解析-重庆市巴南中学7年级数学下册第四章三角形专项练习试卷(含答案详解版)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市巴南中学7年级数学下册第四章三角形专项练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,△ABC中,D,E分别为BC,AD的中点,若△CDE的面积使2,则△ABC的面积是()A.4 B.5 C.6 D.82、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为()A.8 B.10 C.20 D.403、如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是()A.4 B.8 C.16 D.无法计算4、如图,点C在∠AOB的OB边上,用尺规作出了∠NCE=∠AOD,作图痕迹中,弧FG是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧5、如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论:①AE=BF;②AE⊥BF;③QF=QB;④S四边形ECFG=S△ABG.正确的个数是()A.1 B.2 C.3 D.46、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是()A.3cm B.4cm C.7cm D.10cm7、如图,点,,,在一条直线上,,,,,,则()A.4 B.5 C.6 D.78、已知线段AB=9cm,AC=5cm,下面有四个说法:①线段BC长可能为4cm;②线段BC长可能为14cm;③线段BC长不可能为3cm;④线段BC长可能为9cm.所有正确说法的序号是()A.①② B.③④ C.①②④ D.①②③④9、如图是5×5的正方形网格中,以D,E为顶点作位置不同的格点的三角形与△ABC全等,这样格点三角形最多可以画出()A.2个 B.3个 C.4个 D.5个10、尺规作图:作角等于已知角.示意图如图所示,则说明的依据是()A.SSS B.SAS C.ASA D.AAS第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,A、F、C、D在同一条直线上,△ABC≌△DEF,AF=1,FD=3.则线段FC的长为_____.2、如图,△ABC三个内角的平分线交于点O,点D在AB的延长线上,AD=AC,BD=BO,若∠ACB=40°,则∠ABC的度数为_____.3、如图,点F,A,D,C在同一条直线上,,,,则AC等于_____.4、如图,已知AB=12m,CA⊥AB于点A,DB⊥AB于点B,且AC=4m,点P从点B向点A运动,每分钟走1m,点Q从点B向点D运动,每分钟走2m.若P,Q两点同时出发,运动_____分钟后,△CAP与△PQB全等.5、如图,已知,请添加一个条件,使得,则添加的条件可以为___(只填写一个即可).6、如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,将斜边AB绕点A顺时针旋转90°至AB′,连接B'C,则△AB′C的面积为_____.7、如图,点C是线段AB的中点,.请你只添加一个条件,使得≌.(1)你添加的条件是______;(要求:不再添加辅助线,只需填一个答案即可)(2)依据所添条件,判定与全等的理由是______.8、如图,线段AC与BD相交于点O,∠A=∠D=90°,要证明△ABC≌△DCB,还需添加的一个条件是____________.(只需填一个条件即可)9、在平面直角坐标系中,点B(0,4),点A为x轴上一动点,连接AB.以AB为边作等腰Rt△ABE,(B、A、E按逆时针方向排列,且∠BAE为直角),连接OE.当OE最小时,点E的纵坐标为______.10、如图,△ABE≌△ACD,∠A=60°,∠B=20°,则∠DOE的度数为_____°.三、解答题(6小题,每小题10分,共计60分)1、如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.(1)求证:△ABD≌△CFD;(2)已知BC=9,AD=6,求AF的长.2、如图,点A,B,C,D在一条直线上,,,.求证:.3、证明“全等三角形的对应角的平分线相等”.要求:将已有图形根据题意补充完整,并据此写出己知、求证和证明过程.4、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.5、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边的边上,且,,交于点Q.求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.(2)若将题中的点M,N分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.6、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则.(直接写出结果)-参考答案-一、单选题1、D【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可求出的面积.【详解】∵AD是BC上的中线,∴,∵CE是中AD边上的中线,∴,∴,即,∵的面积是2,∴.故选:D.【点睛】本题考查的是三角形的中线的性质,三角形一边上的中线把原三角形分成的两个三角形的面积相等.2、C【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,的面积为,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.3、C【分析】先证明可得从而可得答案.【详解】解:正方形ABCD,AB=4,故选C【点睛】本题考查的是小学涉及的正方形的性质,直角三角形全等的判定与性质,证明是解本题的关键.4、D【分析】根据作一个角等于已知角的步骤即可得.【详解】解:作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选:D.【点睛】本题主要考查作图-尺规作图,解题的关键是熟练掌握作一个角等于已知角的尺规作图步骤.5、D【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正确.【详解】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正确;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四边形ECFG=S△ABG,故④正确.故选:D.【点睛】本题主要是考查了三角形全等、正方形的性质,熟练地综合应用全等三角形以及正方形的性质,证明边相等和角相等,是解决本题的关键.6、C【分析】设三角形第三边的长为xcm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【详解】解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C.【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.7、A【分析】由题意易得,然后可证,则有,进而问题可求解.【详解】解:∵,∴,∵,,∴,∴,∵,∴;故选A.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.8、D【分析】分三种情况:C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:∵线段AB=9cm,AC=5cm,∴如图1,A,B,C在一条直线上,∴BC=AB−AC=9−5=4(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=9+5=14(cm),故②正确;如图3,当A,B,C不在一条直线上,9−5=4cm<BC<9+5=14cm,故线段BC可能为9cm,不可能为3cm,故③,④正确.故选D.【点睛】此题主要考查了三角形三边关系,线段之间的关系,正确分类讨论是解题关键.9、C【分析】观察图形可知:DE与AC是对应边,B点的对应点在DE上方两个,在DE下方两个共有4个满足要求的点,也就有四个全等三角形.【详解】根据题意,运用“SSS”可得与△ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点,如图.故选C.【点睛】本题考查三角形全等的判定方法,解答本题的关键是按照顺序分析,要做到不重不漏.10、A【分析】利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.【详解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根据“SSS”可判断△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故选:A.【点睛】本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.二、填空题1、【分析】根据全等三角形的性质得出AC=FD=3,再求出FC即可.【详解】解:∵△ABC≌△DEF,FD=3,∴AC=FD=3,∵AF=1,∴FC=AC﹣AF=3﹣1=2,故答案为:2.【点睛】本题主要是考查了全等三角形的性质,熟练应用全等三角形的性质,找到对应相等的边,是求解该问题的关键.2、度【分析】连接,,利用证明,则,根据角平分线的定义得到,再利用三角形外角性质得出,最后根据角平分线的定义即可得解.【详解】解:连接,,平分,,在和中,,,,平分,,,,,,,平分,,故答案为:.【点睛】本题考查了全等三角形的判定与性质,角平分线,解题的关键是利用证明.3、6.5【分析】由全等三角形的性质可得到AC=DF,从而推出AF=CD,再由,,求出,则.【详解】解:∵△ABC≌△DEF,∴AC=DF,即AF+AD=CD+AD,∴AF=CD,∵,,∴,∴,∴,故答案为:6.5.【点睛】本题主要考查了全等三角形的性质,线段的和差,解题的关键在于能够熟练掌握全等三角形的性质.4、4【分析】根据题意CA⊥AB,DB⊥AB,则,则分或两种情况讨论,根据路程等于速度乘以时间求得的长,根据全等列出一元一次方程解方程求解即可【详解】解:CA⊥AB,DB⊥AB,点P从点B向点A运动,每分钟走1m,点Q从点B向点D运动,每分钟走2m,设运动时间为,且AC=4m,,当时则,即,解得当时,则,即,解得且不符合题意,故舍去综上所述即分钟后,△CAP与△PQB全等.故答案为:【点睛】本题考查了三角形全等的性质,根据全等的性质列出方程是解题的关键.5、或【分析】根据全等三角形的判定方法即可解决问题.【详解】解:由题意,,根据,可以添加,使得,根据,可以添加,使得.故答案为:或【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.6、【分析】根据题意过点B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,则有S△AB'C=AC•B′H即可求得答案.【详解】解:过点B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC•B′H=×4×4=8.故答案为:8.【点睛】本题主要考查三角形全等的判定与性质和旋转的性质以及勾股定理,根据题意利用全等三角形的判定证明△ACB≌△B'HA是解决问题的关键.7、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)SAS【分析】(1)由已知条件可得两个三角形有一组对应边相等,一组对应角相等,根据三角形全等的判定方法添加条件即可;(2)根据添加的条件,写出判断的理由即可.【详解】解:(1)添加的条件是:AD=CE(或∠D=∠E或∠ACD=∠B)故答案为:AD=CE(或∠D=∠E或∠ACD=∠B)(2)若添加:AD=CE∵点C是线段AB的中点,∴AC=BC∵∴∴≌(SAS)故答案为:SAS【点睛】本题主要考查了添加条件判断三角形全等,熟练掌握全等三角形的判断方法是解答本题的关键.8、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB【分析】根据全等三角形的判定条件求解即可.【详解】解:∵∠A=∠D=90°,BC=CB,∴只需要添加:AC=DB或AB=DC,即可利用HL证明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS证明△ABC≌△DCB,故答案为:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.9、-2【分析】过E作EF⊥x轴于F,由三垂直模型,得EF=OA,AF=OB,设A(a,0),可求得E(a+4,a),点E在直线y=x-4上,当OE⊥CD时,OE最小,据此求出坐标即可.【详解】解:如图,过E作EF⊥x轴于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取点C(4,0),点D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴点E在直线CD上,当OE⊥CD时,OE最小,此时△EFO和△ECO为等腰Rt△,∴OF=EF=2,此时点E的坐标为:(2,-2).故答案为:-2【点睛】本题考查了全等三角形的判定与性质,解题关键是确定点E运动的轨迹,确定点E的位置.10、100【分析】直接利用三角形的外角的性质得出∠CEO=80°,再利用全等三角形的性质得出答案.【详解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案为:100.【点睛】此题主要考查了全等三角形的性质以及三角形的外角的性质,求出∠CEO=80°是解题关键.三、解答题1、(1)证明见解析;(2)AF=3【分析】(1)利用同角的余角相等,证明∠BAD=∠FCD,利用ASA证明即可;(2)利用全等三角形的性质,得BD=DF,结合BD=BC﹣CD,AF=AD﹣DF计算即可.【详解】(1)证明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠FCD,在△ABD和CFD中,,∴△ABD≌△CFD(ASA);(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=9,AD=DC=6,∴BD=BC﹣CD=3,∴AF=AD﹣DF=6﹣3=3.【点睛】本题考查了ASA证明三角形全等,全等三角形的性质,熟练掌握三角形全等的判定和性质是解题的关键.2、见解析【分析】根据平行线的性质得出,运用“角角边”证明△AEB≌△CFD即可.【详解】证明:∵,∴,在△AEB和△CFD中,∴△AEB≌△CFD,∴.【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明.3、见解析.【分析】根据图形和命题写出已知求证,根据全等三角形的性质得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根据角平分线的定义得出∠BAD=∠B′A′D′,根据全等三角形的判定得出△BAD≌△B′A′D′,再根据全等三角形的性质得出答案即可.【详解】解:如图,已知:△ABC≌△A′B′C′,AD、A′D′分别是∠BAC和∠B′A′C′的角平分线,求证:AD=A′D′,证明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,∵AD、A′D′分别是∠BAC和∠B′A′C′的角平分线,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,在△BAD和△B′A′D中,,∴△BAD≌△B′A′D′(ASA),∴AD=A′D′.【点睛】本题考查了全等三角形的判定定理和性质定理,能求出△BAD≌△B′A′D′是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAAS,SSS,两直角三角形全等还有HL,全等三角形的对应边相等.4、证明见解析.【分析】先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.【详解】证明:,,,,,在和中,,,.【点睛】本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.5、(1)仍是真命题,证明见解析(2)仍能得到,作图和证明见解析【分析】(1)由角边角得出和全等,对应边相等即可.(2)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论