难点解析-辽宁省东港市中考数学真题分类(勾股定理)汇编专题测试试题(含解析)_第1页
难点解析-辽宁省东港市中考数学真题分类(勾股定理)汇编专题测试试题(含解析)_第2页
难点解析-辽宁省东港市中考数学真题分类(勾股定理)汇编专题测试试题(含解析)_第3页
难点解析-辽宁省东港市中考数学真题分类(勾股定理)汇编专题测试试题(含解析)_第4页
难点解析-辽宁省东港市中考数学真题分类(勾股定理)汇编专题测试试题(含解析)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省东港市中考数学真题分类(勾股定理)汇编专题测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,正方体盒子的棱长为2,M为BC的中点,则一只蚂蚁从A点沿盒子的表面爬行到M点的最短距离为(

)A. B.C. D.2、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底墙到左墙角的距离为1.5m,顶端距离地面2m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面0.7m,那么小巷的宽度为(

)A.3.2m B.3.5m C.3.9m D.4m3、△ABC的三边长a,b,c满足+(b﹣12)2+|c﹣13|=0,则△ABC的面积是(

)A.65 B.60 C.30 D.264、如图,以Rt△ABC的两直角边为边向外作正方形,其面积分别为S1,S2,若S1=8cm2,S2=17cm2,则斜边AB的长是(

)A.3cm B.6cm C.4cm D.5cm5、勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是(

)A. B. C. D.6、如图,矩形中,的平分线交于点E,,垂足为F,连接.下列结论:①;②;③;④;⑤若,则.其中正确的结论有(

)A.2个 B.3个 C.4个 D.5个7、一个直角三角形的两条直角边边长分别为6和8,则斜边上的高为(

)A.4.5 B.4.6 C.4.8 D.5第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、《九章算术》中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:有一根竹子原来高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面x尺,根据题意,可列方程为______.2、如图,已知四边形中,,则四边形的面积等于________.3、如图1,邻边长为2和6的矩形分割成①,②,③,④四块后,拼接成如图2不重叠、无缝隙的正方形,则图2中的值为___________,图1中的长为_______.4、如图,Rt△ABC的两条直角边,.分别以Rt△ABC的三边为边作三个正方形.若四个阴影部分面积分别为,,,,则的值为______,的值为______.5、如图所示,在四边形ABCD中,AB=5,BC=3,DE⊥AC于E,DE=3,S△DAC=6,则∠ACB的度数等于_____.6、如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为________________.7、若△ABC中,cm,cm,高cm,则BC的长为________cm.8、《九章算术》是我国古代数学名著,书中有下列问题:“今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地,问木长几何?”其意思为:今有墙高1丈,倚木杆于墙,使木之上端与墙平齐,牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.问木杆是多长?(1丈=10尺)设木杆长为x尺根据题意,可列方程为______.三、解答题(7小题,每小题10分,共计70分)1、阅读与思考:请阅读下列材料,并完成相应的任务.若直角三角形的三边的长都是正整数,则三边的长为“勾股数”.构造勾股数,就是要寻找3个正整数,使它们满足“其中两个数的平方和(或平方差)等于第三个数的平方”.通过观察常见勾股数“3,4,5”;“5,12,13”;“7,24,25”……猜想当一组勾股数中(),最小数为奇数时,另两个正整数和满足比且,解得,.任务:(1)请证明猜想成立,即证明,,构成勾股数.(2)若一组勾股数中,最小数为9,则另两个数分别是________和________.2、湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得米,米.求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离.3、如图,点是正方形内一点,将绕点顺时针旋转到的位置,若,求的度数.4、已知,如图,,C为上一点,与相交于点F,连接.,.(1)求证:;(2)已知,,,求的长度.5、如图,有一个水池,水面是一个边长为16尺的正方形,在水池正中央有一根芦苇,它高出水面2尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则水池里水的深度是多少尺?请你用所学知识解答这个问题.6、台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A、B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C会受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?7、拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?-参考答案-一、单选题1、B【解析】【分析】先利用展开图确定最短路线,再利用勾股定理求解即可.【详解】解:如图,蚂蚁沿路线AM爬行时距离最短;∵正方体盒子棱长为2,M为BC的中点,∴,∴,故选:B.【考点】本题考查了蚂蚁爬行的最短路径为题,涉及到了正方形的性质、正方体的展开图、勾股定理、两点之间线段最短等知识,解题关键是牢记相关概念与灵活应用.2、C【解析】【分析】如图,在Rt△ACB中,先根据勾股定理求出AB,然后在Rt△A′BD中根据勾股定理求出BD,进而可得答案.【详解】解:如图,在Rt△ACB中,∵∠ACB=90°,BC=1.5米,AC=2米,∴AB2=1.52+22=6.25,∴AB=2.5米,在Rt△A′BD中,∵∠A′DB=90°,A′D=0.7米,BD2+A′D2=A′B2,∴BD2+0.72=6.25,∴BD2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故选:C.【考点】本题考查了勾股定理的应用,正确理解题意、熟练掌握勾股定理是解题的关键.3、C【解析】【分析】首先根据非负数的性质可得a-5=0,b-12=0,c-13=0,进而可得a、b、c的值,再利用勾股定理逆定理证明△ABC是直角三角形,最后由直角三角形面积公式求解即可.【详解】解:∵+(b-12)2+|c-13|=0,∴a-5=0,b-12=0,c-13=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形,∴S△ABC==30.故选:C.【考点】此题主要考查了非负数的性质,以及勾股定理逆定理,熟练掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,利用非负数性质求出a、b、c的值是解题的关键.4、D【解析】【分析】根据正方形的面积可以得到BC2=8,AC2=17,然后根据勾股定理即可得到AB2,从而可以求得AB的值.【详解】解:S1=8cm2,S2=17cm2,∴BC2=8,AC2=17,∵∠ACB=90°,∴AB2=BC2+AC2,即AB2=8+17=25,∴AB=5cm,故选:D.【考点】本题考查正方形的面积、勾股定理,解答本题的关键是明确正方形的面积是边长的平方.5、B【解析】【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【考点】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.6、D【解析】【分析】根据AE平分∠DAE,可得,从而得到AB=BE,进而得到,可得①正确;然后证明△ABE≌△AFD,可得AB=BE=AF=FD,从而得到∠AED=∠CED,故②正确;再证得△DEF≌△DEC,可得③正确;再根据△ABF≌△DCF,可得BF=CF,故④正确;过点F作FG⊥BC于点G,可得,从而得到,进而得到,可得⑤正确;即可求解.【详解】解:在矩形中,∠BAD=∠ADC=∠ABC=90°,AD=BC,AD∥BC,∵AE平分∠DAE,∴,∵AD∥BC,∴∠DAE=∠AEB=45°,∴∠AEB=∠BAE=45°,∴AB=BE,∴,∵,∴AE=AD,故①正确;在△ABE和△AFD中,∵∠BAE=∠DAE,∠ABE=∠AFD,AE=AD,∴△ABE≌△AFD(AAS),∴BE=DF,∴AB=BE=AF=FD,∴,∴∠AED=∠CED,故②正确;∵∠DAE=45°,DF⊥AE,∴∠ADF=45°,∴∠CDF=45°,∠EDF=∠ADE-∠ADF=22.5°,∴∠CDE=∠FDE=22.5°,∵∠AEB=45°,∠AED=67.5°,∴∠CED=67.5°,∴∠AED=∠CED,∵DE=DE,∴△DEF≌△DEC,∴DF=CD,∴DE⊥CF,故③正确;∵AB=CD,∠BAE=∠CDF=45°,AF=DF,∴△ABF≌△DCF,∴BF=CF,故④正确;如图,过点F作FG⊥BC于点G,∴FG∥AB,∴∠EFG=∠BAE=45°,∴∠EFG=∠FEG,∴FG=GE,∵△DEF≌△DEC,∴CE=EF,∴,∴,∵BF=CF,∴BG=CG,∴,∵AB=1,,∴,,解得:,∴.故⑤正确;∴正确的有5个.故选:D【考点】本题主要考查了矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,熟练掌握相关知识点是解题的关键.7、C【解析】【分析】根据勾股定理求出斜边的长,再根据面积法求出斜边的高.【详解】解:设斜边长为c,高为h.由勾股定理可得:c2=62+82,则c=10,直角三角形面积S=×6×8=×c×h,可得h=4.8,故选:C.【考点】本题考查了勾股定理,利用勾股定理求直角三角形的边长和利用面积法求直角三角形的高是解决此类题的关键.二、填空题1、【解析】【分析】根据勾股定理即可得出结论.【详解】解:设未折断的竹干长为尺,根据题意可列方程为:.故答案为:.【考点】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.2、36【解析】【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,最后利用三角形的面积公式求解即可.【详解】连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC=,在△ACD中,AC2+AD2=25+144=169=CD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•AD=×3×4+×5×12=36.【考点】本题考查了勾股定理及勾股定理的逆定理,正确作出辅助线是解题的关键.3、

【解析】【分析】由等积法解得正方形的边长,再利用勾股定理解得图④的直角边FH的长,在图2中,利用正弦的定义解得,接着利用勾股定理解得,据此解得的值,最后利用解答即可.【详解】解:矩形的面积为:2×6=12正方形的边长如图1,如图2,设或(舍去)故答案为:,.【考点】本题考查正方形与矩形、图形的拼接,涉及勾股定理、正弦、余弦等知识,是重要考点,掌握相关知识是解题关键.4、

24

0【解析】【分析】先证明从而可得再利用图形的面积关系可得:两式相减可得:而证明从而可得第二空的答案.【详解】解:如图,以Rt△ABC的三边为边作三个正方形,两式相减可得:而故答案为:24,0【考点】本题考查的是正方形的性质,全等三角形的判定与性质,图形面积之间的关系,证明是解本题的关键.5、90°##90度【解析】【分析】根据三角形面积公式求出AC=4,根据勾股定理逆定理即可求出∠ACB=90°.【详解】解:∵DE⊥AC于E,DE=3,S△DAC=6,∴×AC×DE=6,∴AC=4,∴,∵AB=5,∴AB2=25,∴,∴∠ACB=90°.故答案为:90°【考点】本题考查了勾股定理逆定理和三角形的面积应用,熟练掌握勾股定理逆定理是解题关键.6、.【解析】【分析】首先根据勾股定理求出BC的长,根据折叠性质,可得=AB=3,=BE,∠B=∠=90°,然后设BE=,根据勾股定理,列出,求解即可.【详解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,将△ABC沿AE折叠,∴=AB=3,=BE,∠B=∠=90°,则,设BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案为.【考点】本题主要考查了翻折变换的性质及勾股定理的应用;解题的关键是准确找出图形中隐含的相等关系.7、28或8##8或28【解析】【分析】高的位置不确定,应分情况进行讨论:(1)高在内部;(2)高在外部,依此即可求解.【详解】解:如图(1)cm,cm,,则,,则;如图(2),由(1)得,,则.则的长为或.故答案为或.【考点】此题考查了勾股定理,本题需注意高的位置不确定,应根据三角形的形状分两种情况讨论.8、102+(x-1)2=x2【解析】【分析】当木杆的上端与墙头平齐时,木杆与墙、地面构成直角三角形,设木杆长为x尺,则木杆底端离墙有(x-1)尺,根据勾股定理可列出方程.【详解】解:如图,设木杆AB长为x尺,则木杆底端B离墙的距离即BC的长有(x-1)尺,在Rt△ABC中,∵AC2+BC2=AB2,∴102+(x-1)2=x2,故答案为:102+(x-1)2=x2.【考点】此题考查了勾股定理的应用,解题的关键是由实际问题抽象出直角三角形,从而运用勾股定理解题.三、解答题1、(1)见解析(2)40;41【解析】【分析】(1)利用勾股定理的逆定理证明即可.(2)利用勾股数的公式代入求值即可.(1)证明:,∴,,构成勾股数.(2)根据最小数为奇数时,另两个正整数为,,当a=9时,,,故答案为:40,41.【考点】本题考查了勾股定理逆定理,勾股数的探索,代入求值,熟练掌握勾股数是解题的关键.2、(1)A,B两点间的距离是40米;(2)点B到直线AC的距离是24米.【解析】【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.【详解】(1)因为是直角三角形,所以由勾股定理,得.因为米,,所以.因为,所以米.即A,B两点间的距离是40米.(2)过点B作于点D.因为,所以.所以(米),即点B到直线AC的距离是24米.【考点】本题考查了勾股定理的应用,属于基础题,关键是掌握勾股定理在直角三角形中的表达式.3、【解析】【分析】连接EE`,如图,根据旋转的性质得BE=BE'=2,AE=CE'=1,∠EBE`=90°,则可判断△BEE`为等腰直角三角形,根据等腰直角三角形的性质得EE`=BE=2,∠BE`E=45°,在△CEE'中,由于CE`+EE'=CE,根据勾股定理的逆定理得到△CEE`为直角三角形,即∠EE`C=90°,然后利用∠BE'C=∠BE'E+∠CE'E求解【详解】连接EE`,如图,∵△ABE绕点B顺时针旋转90°得到△CBE`∴BE=BE'=2,AE=CE'=1,∠EBE'=90°∴△BEE'为等腰直角三角形∴EE'=BE=2,∠BE'E=45°在△CEE`中,CE=3,CE'=1,EE'=2,∵1+(2)=3∴CE+EE'=CE∴△CEE'为直角三角形∴∠EE'C=90°∴∠BE'C=∠BE'E+∠CE'E=135°【考点】此题考查了等腰直角三角形,勾股定理的逆定理,正方形的性质和旋转的性质,利用勾股定理证明三角形是直角三角形是解题关键4、(1)证明见解析;(2)【解析】【分析】(1)先证明再结合证明从而可得结论;(2)先证明再证明从而利用等面积法可得的长度.【详解】解:(1),而(2),,,【考点】本题考查的是三角形的外角的性质,平行线的性质与判定,勾股定理的逆定理的应用,证明是解本题的关键.5、水池里水的深度是15尺【解析】【分析】根据勾股定理列出方程,解方程即可.【详解】解:设水池里水的深度是x尺,由题意得,,解得:x=l5,答:水池里水的深度是15尺.【考点】本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键.6、(1)会,理由见解析;(2)7h【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论