难点详解京改版数学9年级上册期末试题含答案详解(预热题)_第1页
难点详解京改版数学9年级上册期末试题含答案详解(预热题)_第2页
难点详解京改版数学9年级上册期末试题含答案详解(预热题)_第3页
难点详解京改版数学9年级上册期末试题含答案详解(预热题)_第4页
难点详解京改版数学9年级上册期末试题含答案详解(预热题)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

京改版数学9年级上册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、如图,在中,,,将绕点C顺时针旋转得到,点在上,交于F,则图中与相似的三角形有(不再添加其他线段)(

)A.1个 B.2个 C.3个 D.4个2、如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为(

)A. B. C. D.3、如果,那么的结果是(

)A. B. C. D.4、如图,四边形OABC是平行四边形,点A的坐标为A(3,0),∠COA=60°,D为边AB的中点,反比例函数y=(x>0)的图象经过C,D两点,直线CD与y轴相交于点E,则点E的坐标为(

)A.(0,2) B.(0,3) C.(0,5) D.(0,6)5、如图,在正方形网格上有5个三角形(三角形的顶点均在格点上):①△ABC,②△ADE,③△AEF,④△AFH,⑤△AHG,在②至⑤中,与①相似的三角形是(

)A.②④ B.②⑤ C.③④ D.④⑤6、如图,在RtABC中,∠C=90°,AC=3cm,BC=4cm,D从A出发沿AC方向以1cm/s向终点C匀速运动,过点D作DEAB交BC于点E,过点E作EF⊥BC交AB于点F,当四边形ADEF为菱形时,点D运动的时间为()sA. B. C. D.二、多选题(7小题,每小题2分,共计14分)1、下列多边形中,一定不相似的是(

)A.两个矩形 B.两个菱形 C.两个正方形 D.两个平行四边形2、如图,下列条件能判定△ABC与△ADE相似的是(

)A. B.∠B=∠ADEC. D.∠C=∠AED3、如图,在△ABC中,点D,E分别在边AB、AC上,下列条件中能判断△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.4、对于实数a,b,定义运算“※”:,例如:4※2,因为,所以,若函数,则下列结论正确的是(

)A.方程的解为,;B.当时,y随x的增大而增大;C.若关于x的方程有三个解,则;D.当时,函数的最大值为1.5、如图所示,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使与相似,可以添加一个条件下列添加的条件中正确的是(

)A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD∙CD6、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且,下列结论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的为(

)A.① B.② C.③ D.④7、如图,已知抛物线.将该抛物线在x轴及x轴下方的部分记作C1,将C1沿x轴翻折构成的图形记作C2,将C1和C2构成的图形记作C3.关于图形C3,给出的下列四个结论,正确的是(

)A.图形C3恰好经过4个整点(横、纵坐标均为整数的点)B.图形C3上任意一点到原点的最大距离是1C.图形C3的周长大于2πD.图形C3所围成区域的面积大于2且小于π第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、将抛物线沿直线方向移动个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是__________.2、制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是_____元.3、如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是_____.4、若二次函数的顶点在x轴上,则__________.5、如图,在平面直角坐标系中,一条过原点的直线与反比例函数的图象x相交于两点,若,,则该反比例函数的表达式为______.6、如图,已知DC为∠ACB的平分线,DE∥BC.若AD=8,BD=10,BC=15,求EC的长=_____.7、已知=,则=________.四、解答题(6小题,每小题10分,共计60分)1、(1)证明推断:如图(1),在正方形中,点,分别在边,上,于点,点,分别在边,上,.求证:;(2)类比探究:如图(2),在矩形中,将矩形沿折叠,使点落在边上的点处,得到四边形,交于点,连接交于点.试探究与之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接,若,,求的长.2、若二次函数图像经过,两点,求、的值.3、已知:如图,△ABC中,AB=AC,AB>BC.求作:线段BD,使得点D在线段AC上,且∠CBD=∠BAC.作法:①以点A为圆心,AB长为半径画圆;②以点C为圆心,BC长为半径画弧,交⊙A于点P(不与点B重合);③连接BP交AC于点D.线段BD就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接PC.∵AB=AC,∴点C在⊙A上.∵点P在⊙A上,∴∠CPB=∠BAC.()(填推理的依据)∵BC=PC,∴∠CBD=.()(填推理的依据)∴∠CBD=∠BAC.4、已知==,求的值.5、如图,一次函数y1=ax+b与反比例函数的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围;(3)点P是x轴上一点,当时,请求出点P的坐标.6、渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润元与降价元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?-参考答案-一、单选题1、D【解析】【分析】根据旋转的性质及相似三角形的判定方法进行分析,找出存在的相似三角形即可.【详解】根据题意得:BC=B′C,AB=A′B′,AC=A′C,∠B=∠B′,∠A=∠A′=30°,∠ACB=∠A′CB′=90°∵∠A=30°,∠ACB=90°∴∠B=60°∴BB′=BC=B′C,∠B=∠BCB′=∠BB′C=60°∴∠B′CA=30°,∠ACA′=60°,A′B′∥BC∴∠B′FC=∠B′FA=90°∴△AB′F∽△ABC∽△A′B′C∽△A′CF∽△CFB′∴有4个故选D.【考点】考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.2、B【解析】【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=,故选B.【考点】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.3、B【解析】【分析】根据比例的性质即可得到结论.【详解】∵=,∴可设a=2k,b=3k,∴==-.故选B.【考点】本题主要考查了比例的性质,解本题的要点根据题意可设a,b的值,从而求出答案.4、B【解析】【分析】作CE⊥x轴于点E,过B作BF⊥x轴于F,过D作DM⊥x轴于M,设C的坐标为(x,x),表示出D的坐标,将C、D两点坐标代入反比例函数的解析式,解关于x的方程求出x即可得到点C、D的坐标,进而求得直线CD的解析式,最后计算该直线与y轴交点坐标即可得出结果.【详解】解:作CE⊥x轴于点E,则∠CEO=90°,过B作BF⊥x轴于F,过D作DM⊥x轴于M,则BF=CE,DM∥BF,BF=CE,∵D为AB的中点,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴设C的坐标为(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四边形OABC是平行四边形,A(3,0),∴OF=3+x,OM=3+x,即D点的坐标为(3+x,),把C、D的坐标代入y=得:k=x•x=(3+x)•,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),设直线CD解析式为:y=ax+b,则,解得,∴直线CD解析式为:,∴当x=0时,,∴点E的坐标为(0,).故选:B.【考点】本题主要考查了平行四边形的性质、运用待定系数法求函数的解析式以及含度角的直角三角形的性质.根据反比例函数图象经过C、D两点,得出关于x的方程是解决问题的关键.5、A【解析】【分析】根据两边成比例夹角相等两三角形相似即可判断.【详解】解:由题意:①②④中,∠ABC=∠ADE=∠AFH=135°,又∵,∴,,∴△ABC∽△ADE∽△HFA,故选:A.【考点】本题考查相似三角形的判定,解题的关键是理解题意,灵活运用所学知识解决问题.6、D【解析】【分析】由勾股定理可求AB的长,由锐角三角函数可得,即可求解.【详解】解:设经过t秒后,四边形ADEF是菱形,∴AD=DE=t,DE∥AB,∴CD=(3-t)(cm),∠ABC=∠DEC,∵∠C=90°,AC=3cm,BC=4cm,∴(cm),∵sin∠DEC=sin∠ABC=,∴,∴,故选:D.【考点】本题考查了菱形的性质,勾股定理,锐角三角函数等知识,灵活运用这些性质解决问题是本题的关键.二、多选题1、ABD【解析】【分析】利用相似多边形的对应边的比相等,对应角相等分析.【详解】解:要判断两个多边形是否相似,需要看对应角是否相等,对应边的比是否相等.矩形、菱形、平行四边形都属于形状不唯一确定的图形,即对应角、对应边的比不一定相等,故不一定相似,选项A、B、D符合题意;而两个正方形,对应角都是90°,对应边的比也都相等,故一定相似,选项C不符合题意.故选:ABD.【考点】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边的比相等,对应角相等.两个条件必须同时具备.2、ABD【解析】【分析】利用两组对应边的比相等且夹角对应相等的两个三角形相似可对A、C进行判断;根据有两组角对应相等的两个三角形相似可对B、C进行判断.【详解】解:∵∠EAD=∠BAC,当,∠A=∠A,∴△ABC∽△ADE,故选项A符合题意;当∠B=∠ADE时,△ABC∽△ADE,故选项B符合题意;C选项中角A不是成比例的两边的夹角,故选项C不符合题意;当∠C=∠AED时,△ABC∽△ADE,故选项D符合题意;故选:ABD.【考点】本题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.3、ABD【解析】【分析】根据三角形相似的判断方法判断即可.【详解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合题意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合题意;C、,不能判定△AED∽△ABC,不符合题意;D、∵,∠A=∠A,∴△AED∽△ABC,符合题意.故选:ABD.【考点】此题考查了三角形相似的判断方法,解题的关键是熟练掌握三角形相似的判定方法.4、ABD【解析】【分析】根据题干定义求出y=(2x)※(x+1)的解析式,根据2x≥x+1及2x<x+1可得x≥1时y=2x2﹣2x,x<1时,y=﹣x2+1,进而求解.【详解】解:根据题意得:当2x≥x+1,即x≥1时,y=(2x)2﹣2x(x+1)=2x2﹣2x,当2x<x+1,即x<1时,y=(x+1)2﹣2x(x+1)=﹣x2+1,∴当x≥1时,2x2﹣2x=0,解得x=0(舍去)或x=1,当x<1时,﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正确,B、当x>1时,y=2x2﹣2x,抛物线开口向上,对称轴是直线x=,∴x>1时,y随x的增大而增大,∴B选项正确.当x≥1时,y=2x2﹣2x=2(x﹣)2﹣,∴x=1时,y取最小值为y=0,当x<1时,y=﹣x2+1=0,当x=0时,y取最大值为y=1,如图,当0<m<1时,方程(2x)※(x+1)=m有三个解,∴选项C错误,选项D正确.故答案为:ABD.【考点】本题考查二次函数的新定义问题,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系.5、ABD【解析】【分析】根据有两组角对应相等的两个三角形相似可对A选项判断;根据圆周角定理和有两组角对应相等的两个三角形相似可对B选项判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对C、D选项判断.【详解】解:A、,,,故A选项的添加条件正确;B、,,而,,,故B选项的添加条件正确;C、∵AD·AB=CD·BD,∴AD∶BD=CD∶AB,又∵∠ADC≠∠B,∴无法证明与相似,故C选项的添加条件不正确;D、∵,,又,,故D选项的添加条件正确.故选:ABD.【考点】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.也考查了圆周角定理.6、BC【解析】【分析】根据相似三角形的定义,已知条件判定相似的三角形,再利用相似三角形的性质逐一判断选项即可.【详解】解:在正方形中,是的中点,是上一点,且,,..,.,,,..,.②③正确.故选:BC.【考点】本题考查了相似三角形的判定与性质,解题的关键是掌握判定定理有①有两个对应角相等的三角形相似,②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.7、ABD【解析】【分析】画出图象C3,以及以O为圆心,以1为半径的圆,再作出⊙O内接正方形,根据图象即可判断.【详解】解:如图所示,A.图形C3恰好经过(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4个整点,故正确;B.由图象可知,图形C3上任意一点到原点的距离都不超过1,故正确;C.图形C3的周长小于⊙O的周长,所以图形C3的周长小于2π,故错误;D.图形C3所围成的区域的面积小于⊙O的面积,大于⊙O内接正方形的面积,所以图形C3所围成的区域的面积大于2且小于π,故正确;故选:ABD.【考点】本题考查了二次函数的图象与几何变换,数形结合是解题的关键.三、填空题1、【解析】【分析】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),再求出平移后的顶点坐标,最后求出平移后的函数关系式.【详解】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),∴,解得:t=1或t=-1(舍去),∴平移后的顶点坐标为(1,3),∴移动后抛物线的解析式是.故答案为:.【考点】本题考查二次函数的图象变换及一次函数的图像,解题的关键是正确理解图象变换的条件,本题属于基础题型.2、1080【解析】【分析】直接利用相似多边形的性质进而得出答案.【详解】∵将此广告牌的四边都扩大为原来的3倍,∴面积扩大为原来的9倍,∴扩大后长方形广告牌的成本为:120×9=1080(元).故答案为:1080.【考点】此题考查相似多边形的性质,相似多边形的面积的比等于相似比的平方.3、﹣1≤x≤2【解析】【分析】根据图象可以直接回答,使得y1≥y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围.【详解】根据图象可得出:当y1≥y2时,x的取值范围是:﹣1≤x≤2.故答案为:﹣1≤x≤2.【考点】本题考查了二次函数的性质.本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度.4、-2或【解析】【分析】根据二次函数一般式的顶点坐标公式表示出顶点,再根据顶点在x轴上,建立等量关系求解即可.【详解】解:的顶点坐标为:∵顶点在x轴上∴解得:故答案为:或【考点】本题考查二次函数一般式的顶点坐标,掌握二次函数一般式的顶点坐标公式是解题关键.5、y=.【解析】【分析】由正比例函数与反比例函数的两个交点关于原点对称,可得m2-7=2,由点A在第三象限可求m的值,即可求点A坐标,代入解析式可求解.【详解】解:∵一条过原点的直线与反比例函数的图象相交于A、B两点,∴点A与点B关于原点对称,∴m2-7=2,∴m=±3,∵点A在第三象限,∴m<0,∴m=-3,∴点A(-3,-2),∵点A在反比例函数的图象上,∴k=-3×(-2)=6,∴反比例函数的表达式为y=,故答案为:y=.【考点】本题考查了反比例函数与一次函数的交点问题,掌握正比例函数与反比例函数的两个交点关于原点对称是本题的关键.6、【解析】【分析】先由角平分线的定义及平行线的性质求得∠EDC=∠ECD,从而EC=DE;再DE∥BC,证得△ADE∽△ABC,然后根据相似三角形的性质列出比例式,求得DE的长,即为EC的长.【详解】解:∵DC为∠ACB的平分线∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案为:【考点】本题考查了角平分线的定义、平行线的性质、等腰三角形的判定及相似三角形的判定与性质,熟练掌握相关性质与定理是解题的关键.7、【解析】【分析】利用比例的性质进行变形,然后代入代数式中合并约分即可.【详解】解:∵,∴,则.故答案为:.【考点】本题考查比例问题,关键掌握比例的性质,会利用性质把比例式进行恒等变形,会根据需要选择灵活的比例式解决问题.四、解答题1、(1)见解析;(2);见解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再证明四边形DQFG是平行四边形即可解决问题;(2)如图2中,作GM⊥AB于M.然后证明△ABE∽△GMF即可解决问题;(3)如图3中,作PM⊥BC交BC的延长线于M.利用相似三角形的性质求出PM,CM即可解决问题.【详解】(1)如图(1),∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四边形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四边形DQFG是平行四边形,∴DQ=GF,∴FG=AE;(2).理由:如图(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四边形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四边形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如图(3)中,作PM⊥BC交BC的延长线于M.由BE:BF=3:4,设BE=3k,BF=4k,则EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根据勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【考点】本题考查了正方形、矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形,正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,是解题的关键.2、b=-3,c=-4.【解析】【分析】将,代入中,求解二元一次方程组即可解题.【详解】解:将,代入中得,解得:∴b=-3,c=-4.【考点】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.3、(1)见解析;(2)圆周角定理;,圆周角定理的推论【解析】【分析】(1)利用几何语言画出对应的几何图形;(2)先根据圆周角定理得到,再利用等腰三角形的性质得到,从而得到.【详解】解:(1)如图,为所作;(2)证明:连接,如图,,点在上.点在上,(圆周角定理),,(圆周角定理的推论).故答案为:圆周角定理;;圆周角定理的推论.【考点】本题考查了作图复杂作图、也考查了圆周角定理,解题的关键是掌握复杂作图的五种基本作图的基本方法,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.4、-1【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论