难点解析河南郑州桐柏一中7年级数学下册第五章生活中的轴对称同步测试试题(解析卷)_第1页
难点解析河南郑州桐柏一中7年级数学下册第五章生活中的轴对称同步测试试题(解析卷)_第2页
难点解析河南郑州桐柏一中7年级数学下册第五章生活中的轴对称同步测试试题(解析卷)_第3页
难点解析河南郑州桐柏一中7年级数学下册第五章生活中的轴对称同步测试试题(解析卷)_第4页
难点解析河南郑州桐柏一中7年级数学下册第五章生活中的轴对称同步测试试题(解析卷)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南郑州桐柏一中7年级数学下册第五章生活中的轴对称同步测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下列图形中,不是轴对称图形的是()A. B. C. D.2、下列图形中,属于轴对称图形的是()A. B. C. D.3、下列图形中不是轴对称图形的是()A. B.C. D.4、甲骨文是我国的一种古代文字,下列甲骨文中,不是轴对称的是()A. B. C. D.5、下列图形是轴对称图形的是()A. B. C. D.6、下列图形中,是轴对称图形的是()A. B.C. D.7、下列图形为轴对称图形的是()A. B. C. D.8、下列学习类APP的图表中,可看作是轴对称图形的是()A. B. C. D.9、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录.2009年9月28日至10月2日举行的联合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”.下列四个剪纸图案是轴对称图形的为()A. B. C. D.10、如图,在中,,,是上一点,将沿折叠,使点落在边上的处,则等于()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,将一张长方形纸片ABCD(它的每一个角等于90°)沿EF折叠,使点D落在AB边上的点M处,折叠后点C的对应点为点N.若∠AME=50°,则∠EFB=_____°.2、如图所示,其中与甲成轴对称的图形是___________.3、如图,ABC与关于直线l对称,则∠B的度数为__________.4、梯形(如图)是有由一张长方形纸折叠而成的,这个梯形的面积是(______).5、如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=8cm,AC=10cm,BC=14cm,则△DBE的周长为___.6、如图,在RtABC中,∠ACB=90°,AB=4,点D、E分别在AB、AC上,且AD=.连接DE,将ADE沿DE翻折,使点A的对应点F落在BC的延长线上,连接FD,且FD交AC于点G.若FD平分∠EFB,则∠ADE=___°,FG=___.7、如图,与关于直线对称,则的度数为_____.8、如图,在ABC中,∠BAC=80°,∠C=45°,AD是ABC的角平分线,那么∠ADB=_____度.9、如图,和关于直线对称,若,则图中阴影部分的面积为___.10、如果一个图形沿一条直线________,直线两旁的部分能够________,这个图形就叫做____;这条直线就是它的________.三、解答题(6小题,每小题10分,共计60分)1、如图,已知△ABC各顶点坐标分别为A(﹣3,2)、B(﹣4,﹣3)、C(﹣1,﹣1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)写出△ABC关于y轴对称的△A2B2C2的各顶点坐标.2、已知,如图,等腰直角△ABC中,∠ACB=90°,CA=CB,过点C的直线CH和AC的夹角∠ACH=α,请按要求完成下列各题:(1)请按要求作图:作出点A关于直线CH的轴对称点D,连接AD、BD、CD,其中BD交直线CH于点E,连接AE;(2)请问∠ADB的大小是否会随着α的改变而改变?如果改变,请用含α的式子表示∠ADB;如果不变,请求出∠ADB的大小.(3)请证明△ACE的面积和△BCE的面积满足:.3、ABCD是长方形纸片的四个顶点,点E、F、H分别边AD、BC、AD上的三点,连接EF、FH.(1)将长方形纸片的ABCD按如图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′,点B′在FC′上,则∠EFH的度数为;(2)将长方形纸片的ABCD按如图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D'(B′、C′的位置如图所示),若∠B'FC′=16°,求∠EFH的度数;(3)将长方形纸片的ABCD按如图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′,D′(B′、C′的位置如图所示).若∠EFH=n°,则∠B′FC′的度数为.4、如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)求出△ABC的面积为.(2)画出△ABC关于x轴对称的图形△A1B1C1.(3)已知P为y轴上一点,若△ABP的面积为4,求点P的坐标.5、如图,在4×4的正方形方格中,阴影部分是涂黑5个小正方形所形成的图案.将方格内空白的两个小正方形涂黑,使得到的新图案成为一个轴对称图形,请在下面的图中至少画出四个不同的方案,并画出对称轴.6、如图,在边长为1的正方形网格中有一个ABC,完成下列各图(用无刻度的直尺画图,保留作图痕迹).(1)作ABC关于直线MN对称的A1B1C1;(2)求ABC的面积;(3)在直线MN上找一点P,使得PA+PB最小.-参考答案-一、单选题1、A【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义逐一判断即可得到答案.【详解】解:选项A中的图形不是轴对称图形,故A符合题意;选项B中的图形是轴对称图形,故B不符合题意;选项C中的图形是轴对称图形,故C不符合题意;选项D中的图形是轴对称图形,故D不符合题意;故选A【点睛】本题考查的是轴对称图形的识别,掌握“轴对称图形的定义”是解本题的关键.2、A【分析】根据轴对称的定义,把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称图形判断即可;【详解】根据轴对称图形的定义可知,是轴对称图形;故选A.【点睛】本题主要考查了轴对称图形的识别,准确分析判断是解题的关键.3、C【详解】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握沿对称轴折叠后,两部分能够完全重合的图形是轴对称图形是解题的关键.4、D【分析】根据轴对称图形的概念分别判断得出答案.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意;故选:D.【点睛】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.5、C【分析】根据轴对称图形的概念解答即可.【详解】A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.是轴对称图形,故本选项正确;D.不是轴对称图形,故本选项错误.故选C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、A【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可.【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A.【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键.7、A【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置.8、C【分析】根据轴对称图形的定义逐一进行判断即可得答案.【详解】A.不是轴对称图形,故该选项不符合题意,B.不是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项符合题意,D.不是轴对称图形,故该选项不符合题意,故选:C.【点睛】本题考查的是轴对称图形,如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形;轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、A【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选项即可.【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A.【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键.10、D【分析】先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CED的度数,再由三角形外角的性质即可得出结论.【详解】解:在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°-25°=65°,∵△CDE由△CDB折叠而成,∴∠CED=∠B=65°,∵∠CED是△AED的外角,∴∠ADE=∠CED-∠A=65°-25°=40°.故选:D.【点睛】本题考查了三角形内角和定理,翻折变换的性质,根据题意得出∠ADE=∠CED-∠A是解题关键.二、填空题1、70【分析】根据折叠的性质可得∠DEF=∠MEF、∠A=90°、∠EFB=∠DEF,再根据∠AME=50°可得∠AEM=90°﹣∠AME=90°﹣50°=40°,进而求得∠DEF,最后根据平行线的性质解答即可.【详解】解:∵长方形纸片ABCD(它的每一个角等于90°)沿EF折叠,∴∠DEF=∠MEF,∠A=90°,∠EFB=∠DEF,∵∠AME=50°,∴∠AEM=90°﹣∠AME=90°﹣50°=40°,∴∠DEM=180°﹣∠AEM=180°﹣40°=140°,∴∠DEF=∠MEF=.∴∠EFB=70°,故填:70.【点睛】本题主要考查了折叠的性质、平行线的性质等知识点,理解折叠的性质成为解答本题的关键.2、丁【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行判断即可.【详解】解:观察图形可知与甲成轴对称的图形是丁,故答案为:丁.【点睛】本题主要考查了轴对称图形的定义,解题的关键在于能够熟练掌握轴对称图形的定义.3、100°【分析】根据轴对称的性质可得≌,再根据和的度数即可求出的度数.【详解】解:∵与关于直线l对称∴≌∴,∴故答案为:【点睛】本题主要考查了轴对称的性质以及全等的性质,熟练掌握轴对称的性质和全等的性质是解答此题的关键.4、69【分析】通过观察图形可知,这个梯形上底是9cm,下底是(9+5)cm,高是6cm,根据梯形的面积公式:S=(a+b)h÷2,把数据代入公式解答【详解】解:根据折叠可得梯形上底是9cm,下底是(9+5)cm,高是6cm(9+9+5)×6÷2=23×6÷2=138÷2=69()故答案为:69【点睛】此题主要考查梯形面积公式的灵活运用,关键是熟记公式5、【分析】根据对称的性质可得,,进而可得的长,根据三角形的周长公式计算即可求得△DBE的周长【详解】解:∵点A与点E关于直线CD对称,∴,BC=14△DBE的周长为故答案为:【点睛】本题考查了轴对称的性质,理解对称的性质是解题的关键.6、45°【分析】先根据题意可得BD=4-,∠FCG=90°,再根据翻折的性质可得,,,结合FD平分∠EFB可得,由此可证得∠ADG=∠FCG=90°,则,进而可证明,由此可得,进而即可求得FG的长.【详解】解:∵AB=4,AD=,∴BD=AB-AD=4-,∵∠ACB=90°,∴∠FCG=180°-∠ACB=90°,∵翻折,∴,∴,,,∵FD平分∠EFB,∴,∴,又∵,∴,即∠ADG=∠FCG=90°,∴∠FDB=180°-∠ADG=90°=∠ADG,,在与中,,∴,∴,∴,故答案为:45°;.【点睛】本题考查了翻折的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解决本题的关键.7、121°【分析】根据轴对称的性质,轴对称图形全等,则∠A=∠A′,∠B=∠B′,∠C=∠C′,再根据三角形内角和定理即可求得.【详解】解:∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∴∠A=∠A′=36°,∠B=∠B′=23°,∴∠C=180°−36°−23°=121°.故答案为:121°.【点睛】本题考查了轴对称图形的性质,全等的性质,三角形内角和定理,理解轴对称图形的性质是解题的关键.8、【分析】根据角平分线的定义求得,进而根据三角形的外角性质即可求得的度数.【详解】∠BAC=80°,AD是ABC的角平分线,又∠C=45°故答案为:【点睛】本题考查了角平分线的定义,三角形的外角性质,掌握以上知识是解题的关键.9、3【分析】根据对称性可得阴影部分的面积为面积的一半,即可求解.【详解】解:由和关于直线对称可得,,阴影部分的面积为面积的一半即故答案为3.【点睛】此题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.10、折叠互相重合轴对称图形对称轴【分析】根据轴对称图形的概念直接填空即可.【详解】解:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.故答案为:折叠,互相重合,轴对称图形,对称轴.【点睛】本题考查了轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴,解题关键是熟记定义.三、解答题1、(1)见解析;(2)A2(3,2),B2(4,﹣3),C2(1,﹣1)【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)根据关于y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,可得答案.【详解】解:(1)如图,即为所求;(2)根据题图可知,的各点坐标是:A(-3,2),B(-4,﹣3),C(-1,﹣1),则关于y轴对称的的各点坐标分别是:A2(3,2),B2(4,﹣3),C2(1,﹣1).【点睛】本题主要考查作图轴对称变换,掌握轴对称变换的定义和性质,并据此得出变换后的对应点是解题的关键.2、(1)见解析;(2)大小不变,为定值45°;(3)见解析.【分析】(1)根据题意做出点A关于直线CH的轴对称点D,连接AD、BD、CD即可求解;(2)根据题意证明,然后表示出的度数,然后根据周角表示出的度数,根据表示出的度数,即可求出∠ADB的度数;(3)首先根据题意证明,得出,然后根据三角形面积的求法表示出即可证明.【详解】解:(1)如图所示,(2)大小不变,为定值45°.∵A关于直线CH的轴对称点D,∴CA=CD,AD⊥CH,如图所示,AD与CH交于点M,在和中,,∴,∴,,∴,∴,∴,又∵,,∴,∴,∴,故大小不变,为定值45°;(3)如图所示,过点B作BN⊥CH于点N,,,由(2)可知,,又∵,∴,∴为等腰直角三角形,∴,∵,∴,又∵,∴,在和中,∴,∴,即,∴.故.【点睛】此题考查了全等三角形的性质和判定,三角形面积,解题的关键是根据题意表示出和的度数.3、(1)90°;(2)98°;(3)180°﹣2n°【分析】(1)由折叠可得∠BFE=∠B′FE,∠CFH=∠C′FH,进而得出∠EFH=(∠B′FB+∠C′FC),即可得出结果;(2)可设∠BFE=∠B′FE=x,∠CFH=∠C′FH=y,根据2x+16°+2y=180°,得出x+y=82°,进而得到∠EFH;(3)可设∠BFE=∠B′FE=x,∠CFH=∠C′FH=y,即可得到x+y=180°﹣n°,再根据∠EFH=∠B′FE+∠C′FH﹣∠B′FC′=x+y﹣∠B′FC′,即可得到∠B′FC′.【详解】解:(1)∵沿EF、FH折叠,∴∠BFE=∠B′FE,∠CFH=∠C′FH,∵点B′在C′F上,∴∠EFH=∠B′FE+∠C′FH=(∠B′FB+∠C′FC)=×180°=90°,故答案为:90°;(2)∵沿EF、FH折叠,∴可设∠BFE=∠B′FE=x,∠CFH=∠C′FH=y,∵∠B'FC′=16°,∴2x+16°+2y=180°,∴x+y=82°,∴∠EFH=x+16°+y=16°+82°=98°;(3)∵沿EF、FH折叠,∴可设∠BFE=∠B′FE=x,∠CFH=∠C′FH=y,∴∠EFH=180°﹣(∠BFE+∠CFH)=180°﹣(x+y),∵∠EFH=n°,∴x+y=180°﹣n°,∵∠EFH=∠B′FE+∠C′FH﹣∠B′FC′=x+y﹣∠B′FC′,∴∠B′FC′=x+y﹣∠EFH=180°﹣n°﹣n°=180°﹣2n°,故答案为:180°﹣2n°.【点睛】本题考查了折叠的性质,角度的和差,平角的定义,掌握角度的计算是解题的关键.4、(1)4;(2)△A1B1C1为所求作的三角形,画图见详解;(3)点P的坐标为(0,5)或(0,-3).【分析】(1)利用割补法求△ABC面积,S△ABC=S梯形AODC-S△ABO-S△CDB代入计算即可;(2)利用关于x轴对称,横坐标不变,纵坐标变为相反数,先求出A、B、C对称点坐标A1(0,-1),B1(2,0),C1(4,-3).然后描点A1(0,-1),B1(2,0),C1(4,-3).再顺次连结线段

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论