难点解析-人教版8年级数学上册《轴对称》同步测评试题_第1页
难点解析-人教版8年级数学上册《轴对称》同步测评试题_第2页
难点解析-人教版8年级数学上册《轴对称》同步测评试题_第3页
难点解析-人教版8年级数学上册《轴对称》同步测评试题_第4页
难点解析-人教版8年级数学上册《轴对称》同步测评试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《轴对称》同步测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有(

)A.3个 B.4个 C.5个 D.无数个2、如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)3、下列图形中,是轴对称图形的是(

)A. B. C. D.4、下列三角形中,等腰三角形的个数是(

A.4个 B.3个 C.2个 D.1个5、下列图案是几家银行的标志,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在矩形ABCD中,AD=6,AB=4,∠BAD的平分线交BC于点E,则DE=____.2、如图,屋顶钢架外框是等腰三角形,其中,立柱,且顶角,则的大小为_______.3、在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有__种.4、已知:如图,中,分别是和的平分线,过O点的直线分别交、于点D、E,且.若,则的周长为______.5、如图,点D是的平分线OC上一点,过点D作交射线OA于点E,则线段DE与OE的数量关系为:DE______OE(填“>”或“=”或“<”).三、解答题(5小题,每小题10分,共计50分)1、如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.2、如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).3、已知:如图,,相交于点O,,.求证:(1);(2).4、如图,是边长为2的等边三角形,是顶角为120°的等腰三角形,以点为顶点作,点、分别在、上.(1)如图①,当时,则的周长为______;(2)如图②,求证:.5、已知的三边长分别为,,.(1)若,,求的取值范围;(2)在(1)的条件下,若为奇数,试判断的形状,并说明理由.-参考答案-一、单选题1、C【解析】【分析】结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【考点】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.2、D【解析】【分析】首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.【详解】解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),故选D.【考点】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.3、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得.【详解】解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.4、B【解析】【分析】根据题图所给信息,根据边或角分析即可【详解】解:第一个图形中有两边相等,故第一个三角形是等腰三角形,第二个图形中的三个角分别为50°,35°,95°,故第二个三角形不是等腰三角形;第三个图形中的三个角分别为100°,40°,40°,故第三个三角形是等腰三角形;第四个图形中的三个角分别为90°,45°,45°,故第四个三角形是等腰三角形;故答案为:B.【考点】本题考查了等腰三角形的判定,掌握等腰三角形的判定是解题的关键.5、C【解析】【分析】根据轴对称图形的概念“如果一个图形沿着一条直线折叠,直线两旁的部分能够相互重合的图形”可直接进行排除选项.【详解】解:都是轴对称图形,而不是轴对称图形,所以是轴对称图形的有3个;故选C.【考点】本题主要考查轴对称图形的识别,熟练掌握轴对称图形的概念是解题的关键.二、填空题1、2【解析】【分析】由矩形的性质及角平分线的性质解得,,即可证明是等腰直角三角形,从而解得,最后在中利用勾股定理解题即可.【详解】在矩形ABCD中,平分是等腰直角三角形中故答案为:2.【考点】本题考查矩形的性质、等腰直角三角形的判定与性质、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.2、30°##30度【解析】【分析】先由等边对等角得到,再根据三角形的内角和进行求解即可.【详解】,,,,,故答案为:30°.【考点】本题考查了等腰三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键.3、13【解析】【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案.【详解】如图所示:故一共有13画法.4、【解析】【分析】根据两直线平行,内错角相等,以及角平分线性质,可△OBD,△EOC为等腰三角形,由此把△ADE的周长转化为AC+AB.【详解】∵,∴,又∵是的角平分线,∴,∴,∴,同理,∴的周长.故答案为:14cm【考点】本题考查了平行线的性质和等腰三角形的判定,正确证明△OBD,△EOC均为等腰三角形是关键.5、=【解析】【分析】首先由平行线的性质求得∠EDO=∠DOB,然后根据角平分线的定义求得∠EOD=∠DOB,最后根据等腰三角形的判定和性质即可判断.【详解】解:∵ED∥OB,∴∠EDO=∠DOB,∵D是∠AOB平分线OC上一点,∴∠EOD=∠DOB,∴∠EOD=∠EDO,∴DE=OE,故答案为:=.【考点】本题主要考查的是平行线的性质、角平分线的定义以及等角对等边,根据平行线的性质和角平分线的定义求得∠EOD=∠EDO是解题的关键.三、解答题1、(1)证明见解析;(2)∠BOC=100°【解析】【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【详解】解:(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠BOC=360°-180°﹣80°=100°.【考点】考点:等腰三角形的性质.2、(1)见详解;(2)0.5a.【解析】【分析】(1)过点M作MQCN,证明即可;(2)利用等边三角形的性质推出AH=HQ,则PH=HQ+PQ=0.5(AQ+CQ).(1)如下图所示,过点M作MQCN,∵为等边三角形,MQCN,∴,则AM=AQ,且∠A=60°,∴为等边三角形,则MQ=AM=CN,又∵MQCN,∴∠QMP=∠CNP,在,∴,

则MP=NP;(2)∵为等边三角形,且MH⊥AC,∴AH=HQ,

又由(1)得,,则PQ=PC,∴PH=HQ+PQ=0.5(AQ+CQ)=0.5AC=0.5a.【考点】本题考查了等边三角形的性质与判定、三角形全等的判定,正确作出辅助线是解题的关键.3、(1)见详解;(2)见详解【解析】【分析】(1)根据AAS,即可证明;(2)根据全等三角形的性质得OB=OC,进而即可得到结论.【详解】证明:(1)在与中,∵,∴(AAS);(2)∵,∴OB=OC,∴.【考点】本题主要考查全等三角形的判定和性质定理以及等腰三角形的性质,掌握AAS判定三角形全等,是解题的关键.4、(1)4;(2)见解析【解析】【分析】(1)首先证明△BDM≌△CDN,进而得出△DMN是等边三角形,∠BDM=∠CDN=30°,NC=BM=DM=MN,即可解决问题;(2)延长至点,使得,连接,首先证明,再证明,得出,进而得出结果即可.【详解】解:(1)∵是等边三角形,,,∴是等边三角形,,则,∵是顶角的等腰三角形,,,在和中,,,,∵,∴是等边三角形,,,,∴的周长.(2)如图,延长至点,使得,连接,∵是等边三角形,是顶角的等腰三角形,,,,,在和中,,,,,∵,,在和中,.,又∵,.【考点】本题考查了全等三角形的判定与性质及等边三角形的性质及等腰三角形的性质,掌握全等三角形的性质与判定,等边三角形及等腰三角形的性质是解题的关键.5、(1)1<c<5;(2)△AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论