难点详解人教版8年级数学上册《全等三角形》定向测评试题(含解析)_第1页
难点详解人教版8年级数学上册《全等三角形》定向测评试题(含解析)_第2页
难点详解人教版8年级数学上册《全等三角形》定向测评试题(含解析)_第3页
难点详解人教版8年级数学上册《全等三角形》定向测评试题(含解析)_第4页
难点详解人教版8年级数学上册《全等三角形》定向测评试题(含解析)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《全等三角形》定向测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,B,C,E,F四点在一条直线上,下列条件能判定△ABC与△DEF全等的是(

)A.AB∥DE,∠A=∠D,BE=CF B.AB∥DE,AB=DE,AC=DFC.AB∥DE,AC=DF,BE=CF D.AB∥DE,AC∥DF,∠A=∠D2、下列各组的两个图形属于全等图形的是(

)A. B. C. D.3、如图是用直尺和圆规作一个角等于已知角的示意图,说明的依据是(

)A. B. C. D.4、如图,在梯形中,,,,那么下列结论不正确的是()A. B.C. D.5、如图,已知是的角平分线,是的垂直平分线,,,则的长为(

)A.6 B.5 C.4 D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,PM⊥OA,PN⊥OB,∠BOC=30°,PM=PN,则∠AOB=_________.2、如图,在和中,,,直线交于点M,连接.以下结论:①;②;③;④平分.其中正确的是___________(填序号).3、如图,在和中,点B、E、C、F在同一条直线上,且,,请你再添加一个适当的条件:________________,使.4、如图,已知BE=DC,请添加一个条件,使得△ABE≌△ACD:_____.5、如图,若△ABC≌△ADE,且∠1=35°,则∠2=_____.三、解答题(5小题,每小题10分,共计50分)1、已知Rt△ABC中,∠BAC=90°,AB=AC,点E为△ABC内一点,连接AE,CE,CE⊥AE,过点B作BD⊥AE,交AE的延长线于D.(1)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求∠EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DG⊥FH,交FH的延长线于点G,若GH:FH=6:5,△FHM的面积为30,∠EHB=∠BHG,求线段EH的长.2、如图,在△ABC中,BC=AB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAB=30°,求∠ACF的度数.3、中,,,点是边上的一个动点,连接,过点作于点.(1)如图1,分别延长,相交于点,求证:;(2)如图2,若平分,,求的长;(3)如图3,是延长线上一点,平分,试探究,,之间的数量关系并说明理由.4、如图1,点P、Q分别是边长为4cm的等边三角形ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P,Q运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P、Q运动几秒时,是直角三角形?(4)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则变化吗?若变化说明理由,若不变,则求出它的度数。5、如图,是边长为1的等边三角形,,,点,分别在,上,且,求的周长.-参考答案-一、单选题1、A【解析】【分析】根据全等三角形的判定条件逐一判断即可.【详解】解:A、∵,∴,∵,∴,即在和中∵∴,故A符合题意;B、∵,∴,再由,不可以利用SSA证明两个三角形全等,故B不符合题意;C、∵,∴,再由,不可以利用SSA证明两个三角形全等,故C不符合题意;D、∵,∴,,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;故选A.【考点】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.2、D【解析】【分析】根据全等图形的定义,逐一判断选项,即可.【详解】解:A、两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形不能完全重合,不是全等图形,符合题意,C.两个图形不能完全重合,不是全等图形,不符合题意,D.两个图形能完全重合,是全等图形,不符合题意,故选D.【考点】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键.3、B【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'.【详解】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选B.【考点】本题主要考查了尺规作图—作已知角相等的角,解题的关键在于能够熟练掌握全等三角形的判定条件.4、A【解析】【分析】A、根据三角形的三边关系即可得出A不正确;B、通过等腰梯形的性质结合全等三角形的判定与性质即可得出∠ADB=90°,从而得出B正确;C、由梯形的性质得出AB∥CD,结合角的计算即可得出∠ABC=60°,即C正确;D、由平行线的性质结合等腰三角形的性质即可得出∠DAC=∠CAB,即D正确.综上即可得出结论.【详解】A、∵AD=DC,∴AC<AD+DC=2CD,故A不正确;B、∵四边形ABCD是等腰梯形,∴∠ABC=∠BAD,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS),∴∠BAC=∠ABD,∵AB∥CD,∴∠CDB=∠ABD,∠ABC+∠DCB=180°,∵DC=CB,∴∠CDB=∠CBD=∠ABD=∠BAC,∵∠ACB=90°,∴∠CDB=∠CBD=∠ABD=30°,∴∠ABC=∠ABD+∠CBD=60°,B正确,C、∵AB∥CD,∴∠DCA=∠CAB,∵AD=DC,∴∠DAC=∠DCA=∠CAB,C正确.D、∵△DAB≌△CBA,∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,D正确;故选:A.【考点】本题考查了梯形的性质、平行线的性质、等腰三角形的性质以及全等三角形的判定与性质,解题的关键是逐项分析四个选项的正误.本题属于中档题,稍显繁琐,但好在该题为选择题,只需由三角形的三边关系得出A不正确即可.5、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故选D.【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.二、填空题1、60°或60度【解析】【分析】根据到角的两边距离相等的点在角的平分线上判断出OC平分∠AOB,再根据角平分线的定义可得∠AOB=2∠BOC.【详解】解:∵PM⊥OA,PN⊥OB,PM=PN,∴OC平分∠AOB,∴∠AOB=2∠BOC,又∠BOC=30°,∴∠AOB=60°.故答案为:60°.【考点】本题考查了角平分线的判定,掌握角平分线的判定是解题的关键.2、①②③【解析】【分析】由SAS证明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正确;由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正确;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的对应高相等得出OG=OH,由角平分线的判定方法得∠AMO=∠DMO,假设OM平分∠BOC,则可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故④错误;即可得出结论.【详解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正确;由三角形的内角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正确;作OG⊥AM于G,OH⊥DM于H,如图所示,△AOC≌△BOD,∴结合全等三角形的对应高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假设OM平分∠BOC,则∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO与△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④错误;正确的个数有3个;故答案为:①②③.【考点】本题属于三角形的综合题,是中考填空题的压轴题,本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识,证明三角形全等是解题的关键.3、或或【解析】【分析】根据全等三角形的判定即可求解.【详解】解:①根据定理,即,可得;②根据定理,即,可得;③若,则,则根据定理,即可得;综上所述,添加一个适当的条件:或或,故答案为:或或.(答案不唯一)【考点】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.4、∠B=∠C【解析】【分析】根据全等三角形的判定方法解答即可.【详解】解:∵BE=DC,∠A=∠A,∴根据AAS,可以添加∠B=∠C,使得△ABE≌△ACD,故答案为:∠B=∠C.【考点】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.5、35°.【解析】【分析】根据全等的性质可得:∠EAD=∠CAB,再根据等式的基本性质可得∠1=∠2=35°.【详解】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案为35°.【考点】此题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解决此题的关键.三、解答题1、(1)见解析;(2)∠EDH=45°;(3)EH=10.【解析】【分析】(1)根据全等三角形的判定得出△CAE≌△ABD,进而利用全等三角形的性质得出AE=BD即可;(2)根据全等三角形的判定得出△AEH≌△BDH,进而利用全等三角形的性质解答即可;(3)过点M作MS⊥FH于点S,过点E作ER⊥FH,交HF的延长线于点R,过点E作ET∥BC,根据全等三角形判定和性质解答即可.【详解】证明:(1)∵CE⊥AE,BD⊥AE,∴∠AEC=∠ADB=90°,∵∠BAC=90°,∴∠ACE+CAE=∠CAE+∠BAD=90°,∴∠ACE=∠BAD,在△CAE与△ABD中∴△CAE≌△ABD(AAS),∴AE=BD;(2)连接AH∵AB=AC,BH=CH,∴∠BAH=,∠AHB=90°,∴∠ABH=∠BAH=45°,∴AH=BH,∵∠EAH=∠BAH﹣∠BAD=45°﹣∠BAD,∠DBH=180°﹣∠ADB﹣∠BAD﹣∠ABH=45°﹣∠BAD,∴∠EAH=∠DBH,在△AEH与△BDH中∴△AEH≌△BDH(SAS),∴EH=DH,∠AHE=∠BHD,∴∠AHE+∠EHB=∠BHD+∠EHB=90°即∠EHD=90°,∴∠EDH=∠DEH=;(3)过点M作MS⊥FH于点S,过点E作ER⊥FH,交HF的延长线于点R,过点E作ET∥BC,交HR的延长线于点T.∵DG⊥FH,ER⊥FH,∴∠DGH=∠ERH=90°,∴∠HDG+∠DHG=90°∵∠DHE=90°,∴∠EHR+∠DHG=90°,∴∠HDG=∠HER在△DHG与△HER中∴△DHG≌△HER(AAS),∴HG=ER,∵ET∥BC,∴∠ETF=∠BHG,∠EHB=∠HET,∠ETF=∠FHM,∵∠EHB=∠BHG,∴∠HET=∠ETF,∴HE=HT,在△EFT与△MFH中,∴△EFT≌△MFH(AAS),∴HF=FT,∴,∴ER=MS,∴HG=ER=MS,设GH=6k,FH=5k,则HG=ER=MS=6k,,k=,∴FH=5,∴HE=HT=2HF=10.【考点】本题考查全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用数形结合的思想思考问题,属于压轴题.2、(1)证明见解析(2)【解析】【分析】(1)由“HL”可证Rt△ABE≌Rt△CBF;(2)由AB=CB,∠ABC=90°,即可求得∠CAB与∠ACB的度数,即可得∠BAE的度数,又由Rt△ABE≌Rt△CBF,即可求得∠BCF的度数,则由∠ACF=∠BCF+∠ACB即可求得答案.(1)∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,∴Rt△ABE≌Rt△CBF(HL);(2)∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°。∵Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=15°+45°=60°【考点】此题考查了直角三角形全等的判定与性质.解题的关键是注意数形结合思想的应用.3、(1)见解析(2)(3),理由见解析【解析】【分析】(1)欲证明BE=AD,只要证明即可;(2)如图2,分别延长BF,AC交于点E,证,可求;(3)如图3中,分别延长BF,AC交于点E,由(1)可得△ACD≌△BCE,得CD=CE,再证可得结论.(1)解:(1)∵,∴,又∵,∴.在和中,∴.∴.(2)解:如图2,延长,交于点.∵,∴,∵平分,∴.在和中,∴.∴.由(1)可得,.∴.(3)解:.理由:如图3,延长,交于点.由(1)可得,,∴.∵,∴,∵平分,∴.在和中,∴.∴.∵.∴.【考点】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.4、(1)见解析;(2)∠CMQ=60°,不变;(3)当第秒或第秒时,△PBQ为直角三角形;(4)∠CMQ=120°,不变.【解析】【分析】(1)利用SAS可证全等;(2)先证△ABQ≌△CAP,得出∠BAQ=∠ACP,通过角度转化,可得出∠CMQ=60°;(3)存在2种情况,一种是∠PQB=90°,另一种是∠BPQ=90°,分别根据直角三角形边直角的关系可求得t的值;(4)先证△PBC≌△ACQ,从而得出∠BPC=∠MQC,然后利用角度转化可得出∠CMQ=120°.【详解】(1)证明:在等边三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论