




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省泰兴市中考数学试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、下列图形中,既是中心对称图形又是抽对称图形的是()A. B. C. D.2、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形状图.搭成这个几何体所用的小立方块的个数是()A.个 B.个 C.个 D.个3、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为()A. B. C. D.4、一元二次方程配方后可化为(
)A. B.C. D.5、下列事件是确定事件的是()A.方程有实数根 B.买一张体育彩票中大奖C.抛掷一枚硬币正面朝上 D.上海明天下雨二、多选题(5小题,每小题3分,共计15分)1、下列四个说法中,不正确的是(
)A.一元二次方程有实数根B.一元二次方程有实数根C.一元二次方程有实数根D.一元二次方程x2+4x+5=a(a≥1)有实数根2、观察如图推理过程,错误的是(
)A.因为的度数为,所以B.因为,所以C.因为垂直平分,所以D.因为,所以3、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的交点的横坐标分别为﹣1、3,则下列结论中正确的有()A.abc<0 B.2a+b=0 C.3a+2c>0 D.对于任意x均有ax2﹣a+bx﹣b≥04、如图,AB是圆O的直径,点G是圆上任意一点,点C是的中点,,垂足为点E,连接GA,GB,GC,GD,BC,GB与CD交于点F,则下列表述正确的是(
)A. B.C. D.5、如图,AB为的直径,,BC交于点D,AC交于点E,.下列结论正确的是(
)A. B.C. D.劣弧是劣弧的2倍第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、五张背面完全相同的卡片上分别写有、、-31、、0.101001001…(相邻两个1间依次多1个0)五个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,抽到有理数的概率是______.2、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点.已知点,,为的外接圆.(1)点M的纵坐标为______;(2)当最大时,点P的坐标为______.3、已知关于的一元二次方程,有下列结论:①当时,方程有两个不相等的实根;②当时,方程不可能有两个异号的实根;③当时,方程的两个实根不可能都小于1;④当时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.4、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)5、如图,把△ABC绕点C顺时针旋转25°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A度数为___________.四、简答题(2小题,每小题10分,共计20分)1、某校一棵大树发生一定的倾斜,该树与地面的夹角.小明测得某时大树的影子顶端在地面处,此时光线与地面的夹角;又过了一段时间,测得大树的影子顶端在地面处,此时光线与地面的夹角,若米,求该树倾斜前的高度(即的长度).(结果保留一位小数,参考数据:,,,).2、如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E(1)求证:AC是⊙O的切线;(2)若OB=2,CD=,求图中阴影部分的面积(结果保留).五、解答题(4小题,每小题10分,共计40分)1、在中,,,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G.(1)如图,当点E在线段CD上时,①依题意补全图形,并直接写出BC与CF的位置关系;②求证:点G为BF的中点.(2)直接写出AE,BE,AG之间的数量关系.2、如图,已知在中,,D、E是BC边上的点,将绕点A旋转,得到,连接.(1)当时,时,求证:;(2)当时,与有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当,BD与DE满足怎样的数量关系时,是等腰直角三角形?(直接写出结论,不必证明)3、用适当的方法解方程:(1).(2).4、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:(1)这次活动共调查了______人,并补充完整条形统计图;(2)在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为______;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表的方法,求出两人恰好选择同一种支付方式的概率.-参考答案-一、单选题1、B【详解】解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;.既是轴对称图形,也是中心对称图形,故此选项符合题意;.是轴对称图形,不是中心对称图形,故此选项不符合题意;.不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、D【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:综合主视图,俯视图,左视图,底层有5个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是6,故选D.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.3、C【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,∴随机抽取一个球是黄球的概率是.故选C.【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.4、B【解析】【分析】根据题意直接对一元二次方程配方,然后把常数项移到等号右边即可.【详解】解:根据题意,把一元二次方程配方得:,即,∴化成的形式为.故选:B.【考点】本题考查配方法解一元二次方程,注意掌握配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5、A【分析】随机事件:是指在一定条件下可能发生也可能不发生的事件,根据随机事件的分类对各个选项逐个分析,即可得到答案【详解】解:.方程无实数根,因此“方程有实数”是不可能事件,所以选项符合题意;B.买一张体育彩票可能中大奖,有可能不中,因此是随机事件,所以选项B不符合题意;C.抛掷一枚硬币,可能正面朝上,有可能反面朝上,因此是随机事件,所以选项C不符合题意;D.上海明天可能下雨,有可能不下雨,因此是随机事件,所以选项D不符合题意;故选:.【点睛】本题考查的是确定事件与随机事件的概念,掌握确定事件分为必然事件,不可能事件,及随机事件的概念是解题的关键.二、多选题1、ABC【解析】【分析】判断上述方程的根的情况,只要看根的判别式△的值的符号就可以了.【详解】解:、△,方程无实数根,错误,符合题意;、△,方程无实数根,错误,符合题意;、△,方程无实数根,错误,符合题意;、△,方程有实数根,正确,不符合题意;故选:ABC.【考点】本题考查了一元二次方程根的情况与判别式△的关系:解题的关键是掌握(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.2、ABC【解析】【分析】A.
根据定理“圆心角的度数等于它所对的弧的度数。”可得.B.
根据定理“同圆或等圆中,相等的圆心角所对的弧相等。”可得.C.
根据“垂径定理”及弦的定义可得.D.
根据“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中得到的四组量中有一组量相等,则对应的其余各组量也相等。”可得.【详解】由定理“圆心角的度数等于它所对的弧的度数。”A.∵的度数是∴,故选项A错误.B.
由定理“同圆中相等的圆心角所对的弧相等。”,B选项题干中不是同一个圆,故选项B错误.C.
由“垂径定理:垂直于弦(非直径)的直径平分这条弦,并且平分弦所对的两条弧。没有过圆心,不是直径,并且,根据弦的定义,不是圆O的弦,因此无法判断,故选项C错误.D.
∵∴即由定理“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,则对应的其余各组量也相等。”所以,故选项D正确.【考点】本题旨在考查圆,圆心角,所对应的圆弧及弦的相关定义及性质定理,熟练掌握圆的相关定理是解题的关键.3、BD【解析】【分析】由抛物线开口方向得到a>0,利用抛物线与x轴的交点问题和抛物线的对称性得到抛物线的对称轴为直线x=1,即-=1,所以b=-2a<0,利用抛物线与y轴的交点位置得到c<0,则可对A进行判断;利用b=-2a可对B进行判断;由于x=-1时,y=0,所以a-b+c=0,则c=-3a,3a+2c=-3a<0,于是可对C进行判断;根据二次函数性质,x=1时,y的值最小,所以a+b+c≤ax2+bx+c,于是可对D进行判断.【详解】解:∵抛物线开口向上,∴a>0,∵抛物线与x轴的交点的坐标分别为(-1,0),(3,0),∴抛物线的对称轴为直线x=1,即-=1,∴b=-2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以A错误;∵b=-2a,∴2a+b=0,所以B正确;∵x=-1时,y=0,∴a-b+c=0,即a+2a+c=0,∴c=-3a,∴3a+2c=3a-6a=-3a<0,所以C错误;∵x=1时,y的值最小,∴对于任意x,a+b+c≤ax2+bx+c,即ax2-a+bx-b≥0,所以D正确.故选:BD.【考点】本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围;利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.4、ACD【解析】【分析】根据垂径定理和圆周角定理可以判断A,根据圆周角定理可以判断B,根据圆周角定理、垂径定理以及等角对等边,即可判断C,根据圆周角定理、垂径定理以及平行线的判定,即可判断D.【详解】解:∵AB是圆O的直径,,∴,∴,故A正确;∵AB是圆O的直径,,∴,∵,即,也没有其他条件可以证得和的另外一组内角对应相等,∴不能证得,故B不正确;∵点C是的中点,∴,∴,∵AB是圆O的直径,,∴,∴,∴,∴,故C正确;∵点C是的中点,∴,∵AB是圆O的直径,,∴,∴,∴,∴,故D正确.故选ACD.【考点】本题主要考查了垂径定理、圆周角定理、等腰三角形的判定以及平行线的判定.5、ABD【解析】【分析】根据圆周角定理,等边对等角,等腰三角形的性质,直径所对圆周角是直角等知识即可解答【详解】如图,连接,,∵是的直径,∴,又∵中,,∴点D是的中点,即,故选项正确;由选项可知是的平分线,∴,由圆周角定理知,,故选项正确;∵是的直径,∴,∵,∴,∴,∵,∴,∴,即,∴,故选项错误;∵,∴,∴,在中,∵,∴,∴,∴,∴劣弧是劣弧的2倍,故选项正确.综上所述,正确的结论是:.故选:【考点】本题考查了圆周角定理,等边对等角,等腰直角三角形的判定和性质,直径所对圆周角是直角等知识,解题关键是求出相应角的度数三、填空题1、##0.4【解析】【分析】根据题意可知有理数有-31、,共2个,根据概率公式即可求解【详解】解:在、、-31、、0.101001001…(相邻两个1间依次多1个0)五个实数中,-31、是有理数,∴任意取一张,抽到有理数的概率是故答案为:【考点】本题考查了实数的分类,根据概率公式求概率,理解题意是解题的关键.2、5(4,0)【分析】(1)根据点M在线段AB的垂直平分线上求解即可;(2)点P在⊙M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可.【详解】解:(1)∵⊙M为△ABP的外接圆,∴点M在线段AB的垂直平分线上,∵A(0,2),B(0,8),∴点M的纵坐标为:,故答案为:5;(2)过点,,作⊙M与x轴相切,则点M在切点处时,最大,理由:若点是x轴正半轴上异于切点P的任意一点,设交⊙M于点E,连接AE,则∠AEB=∠APB,∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即点P在切点处时,∠APB最大,∵⊙M经过点A(0,2)、B(0,8),∴点M在线段AB的垂直平分线上,即点M在直线y=5上,∵⊙M与x轴相切于点P,MP⊥x轴,从而MP=5,即⊙M的半径为5,设AB的中点为D,连接MD、AM,如上图,则MD⊥AB,AD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四边形OPMD是矩形,从而OP=MD,由勾股定理,得MD=,∴OP=MD=4,∴点P的坐标为(4,0),故答案为:(4,0).【点睛】本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键.3、①③④【解析】【分析】由根的判别式,根与系数的关系进行判断,即可得到答案.【详解】解:根据题意,∵一元二次方程,∴;∴当,即时,方程有两个不相等的实根;故①正确;当,解得:,方程有两个同号的实数根,则当时,方程可能有两个异号的实根;故②错误;抛物线的对称轴为:,则当时,方程的两个实根不可能都小于1;故③正确;由,则,解得:或;故④正确;∴正确的结论有①③④;故答案为:①③④.【考点】本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关系,解题的关键是掌握所学的知识进行解题.4、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算.【详解】解:依题意,n=,r=2,∴扇形的弧长=.故答案为:.【点睛】本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=.5、65°【解析】【分析】根据旋转的性质,可得知,从而求得的度数,又因为的对应角是,即可求出的度数.【详解】绕着点时针旋转,得到,的对应角是故答案为:.【考点】此题考查了旋转的性质,解题的关键是正确确定对应角.四、简答题1、该树倾斜前高度约为11.3米.【解析】【分析】过A作AH⊥BC于E,解直角三角形即可得到结论.【详解】过作于,∵,∴为等腰三角形,设,∵,∴,又在中,∵,∴,即,∴,即,又在中,∴,∴.答:该树倾斜前高度约为11.3米.【考点】本题考查的是解直角三角形的应用−仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.2、(1)见解析;(2)【解析】【分析】(1)欲证明AC是⊙O的切线,只要证明OD⊥AC即可.(2)证明△OBE是等边三角形即可解决问题.【详解】(1)证明:连接OD,如图,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切线.(2)过O作OG⊥BC,连接OE,则四边形ODCG为矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,则△OBE是等边三角形,∴阴影部分面积为﹣×2×=.【考点】本题考查切线的判定和性质,等边三角形的判定和性质,思想的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.五、解答题1、(1)①BC⊥CF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.【分析】(1)①如图所示,BC⊥CF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;②根据AD⊥BC,BC⊥CF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;(2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.【详解】解:(1)①如图所示,BC⊥CF.∵将线段AE逆时针旋转90°得到线段AF,∴AE=AF,∠EAF=90°,∴∠EAC+∠CAF=90°,∵,,∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴∠ABE=∠ACF=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,∴BC⊥CF;②∵AD⊥BC,BC⊥CF.∴AD∥CF,∴∠BDG=∠BCF=90°,∠BGD=∠BFC,∴△BDG∽△BCF,∴,∵,AD⊥BC,∴BD=DC=,∴,∴,∴,∴BG=GF;(2)2AE2=4AG2+BE2.延长BA交CF延长线于H,∵AD⊥BC,AB=AC,∴AD平分∠BAC,∴∠BAD=∠CAD=,∵BG=GF,AG∥HF,∴∠BAG=∠H=45°,∠AGB=∠HFB,∴△BAG∽△BHF,∴,∴HF=2AG,∵∠ACE=45°,∴∠ACE=∠H,∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,∴∠EAC=∠FAH,在△AEC和△AFH中,,∴△AEC≌△AFH(AAS),∴EC=FH=2AG,在Rt△AEF中,根据勾股定理,在Rt△ECF中,即.【点睛】本题考查图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理,掌握图形旋转性质,三角形完全判定与性质,等腰直角三角形性质,三角形相似判定与性质,勾股定理是解题关键.2、(1)见解析;(2)∠DAE=∠BAC,见解析;(3)DE=BD,见解析【分析】(1)根据旋转的性质可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,从而得到∠DAE=∠D′AE,再利用“边角边”证明△ADE和△AD′E全等,根据全等三角形对应边相等证明即可;(2)根据旋转的性质可得AD=AD′,再利用“边边边”证明△ADE和△AD′E全等,然后根据全等三角形对应角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,从而得解;(3)求出∠D′CE=90°,然后根据等腰直角三角形斜边等于直角边的倍可得D′E=CD′,再根据旋转的性质解答即可.【详解】(1)证明:∵△ABD绕点A旋转得到△ACD′,∴AD=AD′,∠CAD′=∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC−∠DAE=120°−60°=60°,∴∠DAE=∠D′AE,在△ADE和△AD′E中,,∴△ADE≌△AD′E(SAS),∴DE=D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 魅力新疆解说课件
- 高铁铁路授课课件
- 电脑耗材培训知识课件
- 电能仪表工艺知识培训课件
- 电缆附件安装知识培训课件
- 电站电工基础知识培训课件
- 电磁灶用电安全知识培训课件
- 高热惊厥业务学习课件
- 3-4-Dihydroxybenzeneacetic-acid-13C-18O2-生命科学试剂-MCE
- 高校戏曲鉴赏课件
- 如何申请非遗
- 越剧《梁山伯与祝英台》剧本
- 广东省广州市越秀区2024年八年级下学期期末英语试卷附答案
- JJF1030-2023温度校准用恒温槽技术性能测试规范
- 矿山压力与岩层控制(第二章)
- 幼儿园低结构材料清单
- 注塑标准成型条件表电子表格模板
- 冶金传输原理课件
- 《健康是1财富是》课件
- 最常用2000个英语单词-(含注释)
- 《输血制度及流程》课件
评论
0/150
提交评论