




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省新泰市中考数学测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、把抛物线的图象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是(
)A. B. C. D.2、如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75°3、如图,点A,B的坐标分别为,点C为坐标平面内一点,,点M为线段的中点,连接,则的最大值为()A. B. C. D.4、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米 B.5米 C.2米 D.7米5、如图,G是正方形ABCD内一点,以GC为边长,作正方形GCEF,连接BG和DE,试用旋转的思想说明线段BG与DE的关系()A.DE=BG B.DE>BG C.DE<BG D.DE≥BG二、多选题(5小题,每小题3分,共计15分)1、下列命题中,不正确的是(
)A.三点可确定一个圆B.三角形的外心是三角形三边中线的交点C.一个三角形有且只有一个外接圆D.三角形的外心必在三角形的内部或外部2、下列方程中是一元二次方程的有(
)A.B.C.D.E.F.3、如图,PA、PB是的切线,切点分别为A、B,BC是的直径,PO交于E点,连接AB交PO于F,连接CE交AB于D点.下列结论正确的是(
)A.CE平分∠ACB B. C.E是△PAB的内心 D.4、在中,,,且关于x的方程有两个相等的实数根,以下结论正确的是(
)A.AC边上的中线长为1 B.AC边上的高为C.BC边上的中线长为 D.外接圆的半径是25、若二次函数(a是不为0的常数)的图象与x轴交于A、B两点.则以下结论正确的有(
)A.B.当时,y随x的增大而增大C.无论a取任何不为0的数,该函数的图象必经过定点D.若线段AB上有且只有5个横坐标为整数的点,则a的取值范围是第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,直线y=﹣x+6与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最大值为_____.2、在平面直角坐标系中,二次函数过点(4,3),若当0≤x≤a时,y有最大值7,最小值3,则a的取值范围是_____.3、如图,是等边三角形,点D为BC边上一点,,以点D为顶点作正方形DEFG,且,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为________.4、如图,已知是的直径,且,弦,点是弧上的点,连接、,若,则的长为______.5、袋中有五颗球,除颜色外全部相同,其中红色球三颗,标号分别为1,2,3,绿色球两颗,标号分别为1,2,若从五颗球中任取两颗,则两颗球的标号之和不小于4的概率为__.四、解答题(6小题,每小题10分,共计60分)1、如图,⊙O的半径弦AB于点C,连结AO并延长交⊙O于点E,连结EC.已知,.(1)求⊙O半径的长;(2)求EC的长.2、已知P为⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若∠APQ=∠BPQ(1)如图1,当∠APQ=45°,AP=1,BP=2时,求⊙O的半径。(2)如图2,连接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,设∠NOP=α,∠OPN=β,若AB平行于ON,探究α与β的数量关系。3、某水果店标价为10元/kg的某种水果经过两次降价后价格为8.1元/kg,并且两次降价的百分率相同.时间/天x销量/kg120-x储藏和损耗费用/元3x2-64x+400(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示,已知该水果的进价为4.1元/kg,设销售该水果第x天(1≤x<10)的利润为377元,求x的值.4、如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OB,求∠A的度数.5、冰墩墩是2022年北京冬季奥运会的吉祥物.冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.①求w关于x的函数解析式,并求每周总利润的最大值;②当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围.6、如图,抛物线y=2(x-2)2与平行于x轴的直线交于点A,B,抛物线顶点为C,△ABC为等边三角形,求S△ABC;-参考答案-一、单选题1、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:∵抛物线的顶点坐标为(2,1),∴向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)∴所得抛物线解析式是.故选:A.【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便.2、B【解析】【分析】连接CD,根据圆内接四边形的性质得到∠CDB=180°﹣∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论.【详解】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故选:B.【考点】本题考查了圆内接四边形的性质,垂径定理,等腰三角形的性质等知识.正确理解题意是解题的关键.3、B【解析】【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM=ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM=ON+MN最大,∵,则△ABO为等腰直角三角形,∴AB=,N为AB的中点,∴ON=,又∵M为AC的中点,∴MN为△ABC的中位线,BC=1,则MN=,∴OM=ON+MN=,∴OM的最大值为故答案选:B.【考点】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM=ON+MN最大.4、B【解析】【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为-7,∴点E坐标为(-7,-),
∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴顶点为A的小孔所在抛物线的解析式为y=-(x﹣b)2,∵大孔水面宽度为20米,∴当x=-10时,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴单个小孔的水面宽度=|(+b)-(-+b)|=5(米),故选:B.【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.5、A【解析】【分析】根据四边形ABCD为正方形,得出BC=DC,∠BCD=90°,根据四边形CEFG为正方形,得出GC=EC,∠GCE=90°,再证∠BCG=∠DCE,△BCG与△DCE具有可旋转的特征即可【详解】解:∵四边形ABCD为正方形,∴BC=DC,∠BCD=90°,∵四边形CEFG为正方形,∴GC=EC,∠GCE=90°,∵∠BCG+∠GCD=∠GCD+∠DCE=90°,∴∠BCG=∠DCE,∴△BCG绕点C顺时针方向旋转90°得到△DCE,∴BG=DE,故选项A.【考点】本题考查图形旋转特征,正方形性质,三角形全等条件,同角的余角性质,掌握图形旋转特征,正方形性质,三角形全等条件是解题关键.二、多选题1、ABD【解析】【分析】根据圆的性质定理逐项排查即可.【详解】解:A.不在同一条直线上的三点确定一个圆,故本选项错误;B.三角形的外心是三角形三边垂直平分线的交点,所以本选项是错误;C.三角形的外接圆是三条垂直平分线的交点,有且只有一个交点,所以任意三角形一定有一个外接圆,并且只有一个外接圆,所以本选项是正确的;D.直角三角形的外心在斜边中点处,故本选项错误.故选:ABD.【考点】考查确定圆的条件以及三角形外接圆的知识,掌握三角形的外接圆是三条垂直平分线的交点是解题的关键.2、BCD【解析】【分析】根据一元二次方程的定义对6个选项逐一进行分析.【详解】A中最高次数是3不是2,故本选项错误;B符合一元二次方程的定义,故本选项正确;C原式可化为4x2—=0,符合一元二次方程的定义,故本选项正确;D原式可化为2x2十x-1=0,符合一元二次方程的定义,故本选项正确;E原式可化为2x+1=0,不符合一元二次方程的定义,故本选项错误;Fax2+bx+c=0,只有在满足a≠0的条件下才是一元二次方程,故本选项错误.故答案为:BCD【考点】本题考查了一元二次方程的概念,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特别要注意a≠0的条件,这是在做题过程中容易忽视的知识点.3、ACD【解析】【分析】连接OA,BE,根据PA、PB是⊙O的切线,可得PA=PB,OA=OB,可得OP是AB的垂直平分线,根据垂径定理,进而可以判断A;根据OB=OC,AF=BF,可得OF是三角形BAC的中位线,进而即可判断D;证明∠PBE=∠EBA,∠APE=∠BPE,即可判断C;根据AC∥OE,可得△CDA∽△EDF,进而可以判断B.【详解】如图,连接OA,BE,∵PA、PB是⊙O的切线,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分线,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正确;∵BC是⊙O的直径,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正确;∵PB是⊙O的切线,∴∠PBE+∠EBC=90°,∵BC是⊙O的直径,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的内心;故C正确;∵AC∥OE,∴△CDA∽△EDF.故B错误;∴结论正确的是A,C,D.故选:ACD.【考点】此题考查了圆周角定理、切线的性质、三角形中位线定理、及勾股定理的知识,解答本题的关键是熟练掌握切线的性质及圆周角定理,注意各个知识点之间的融会贯通.4、BCD【解析】【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出AC的长,利用等积法求出斜边上的高,根据勾股定理求出BC边上的中线,利用直角三角形外接圆的半径是斜边的一半得出外接圆的半径.【详解】∵一元二次方程x2-4x+b=0有两个相等的实数根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC为直角三角形,∵直角三角形斜边上的中线等于斜边的一半的性质,∴AC边上的中线长=2,故A错误;∵ABBC=ACh∴22=4h∴h=故B正确;BC边上的中线==故C正确直角三角形外接圆的半径等于斜边的一半,所以为2故D正确.故答案为:BCD【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ=0,方程有两个相等的实数根;还考查了利用勾股定理判定直角三角形及勾股定理的应用,并考查了直角三角形斜边上的中线等于斜边的一半的性质以及三角形的外接圆的性质.5、ACD【解析】【分析】求得顶点坐标,根据题意即可判断①正确;根据二次函数的性质即可判断②错误;二次函数是不为0的常数)的顶点,即可判断③错误;根据题意时,时,即可判断④正确.【详解】解:二次函数,顶点为,在轴的下方,∵函数的图象与轴交于、两点,抛物线开口向上,,故①正确;时,随的增大而增大,故②错误;由题意可知当,二次函数是不为0的常数)的图象一定经过点,故③正确;线段上有且只有5个横坐标为整数的点,且对称轴为直线,∴当时,,当时,,,解得,故④正确;故选:ACD.【考点】本题考查了二次函数的性质,二次函数图象与系数的关系,二次函数图象上点的坐标特征,能够理解题意,利用二次函数的性质解答是解题的关键.三、填空题1、32【解析】【分析】如图,作CH⊥AB于H交⊙O于E、F,求出A、B的坐标,根据勾股定理求出AB,再由S△ABC=AB•CH=OB•AC求出点C到AB的距离CH,即可求出圆C上点到AB的最大距离,根据面积公式求出即可.【详解】如图,作CH⊥AB于H交⊙O于E、F,∵直线y=﹣x+6与x轴、y轴分别交于A、B两点,∴当y=0时,可得0=﹣x+6,解得:x=8,∴A(8,0),当x=0时,得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB•CH=OB•AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距离为6.4,∴△PAB面积的最大值=×10×6.4=32,故答案为32.【考点】本题考查了三角形的面积,勾股定理、三角形等面积法求高、求圆心到直线的距离等知识,解此题的关键是求出圆上的点到直线AB的最大距离.2、2≤a≤4.【解析】【分析】先求得抛物线的解析式,根据二次函数的性质以及二次函数图象上点的坐标特征即可得到a的取值范围.【详解】解:∵二次函数y=-x2+mx+3过点(4,3),∴3=-16+4m+3,∴m=4,∴y=-x2+4x+3,∵y=-x2+4x+3=-(x-2)2+7,∴抛物线开口向下,对称轴是x=2,顶点为(2,7),函数有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,∵当0≤x≤a时,y有最大值7,最小值3,∴2≤a≤4.故答案为:2≤a≤4.【考点】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.3、8【解析】【分析】过点A作于M,由已知得出,得出,由等边三角形的性质得出,,得出,在中,由勾股定理得出,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,,即此时AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出.【详解】过点A作于M,∵,∴,∴,∵是等边三角形,∴,∵,∴,∴,在中,,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,,即此时AE取最小值,在中,,∴在中,;故答案为8.【考点】本题考查了旋转的性质、正方形的性质、等边三角形的性质、勾股定理以及最小值问题;熟练掌握正方形的性质和等边三角形的性质是解题的关键.4、9【解析】【分析】连接OC和OE,由同弧所对的圆周角等于圆心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂径定理求出CD.【详解】解:连接OC和OE,如下图所示:由同弧所对的圆周角等于圆心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH为30°,60°,90°的三角形,其三边之比为,∴CH=,∴CD=2CH=9,故答案为:9.【考点】本题考查了圆周角定理及垂径定理等相关知识点,本题的关键是求出∠COB=60°.5、##0.5【解析】【分析】画树状图,共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,再由概率公式求解即可.【详解】画树状图如图:共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,两颗球的标号之和不小于4的概率为,故答案为:.【考点】本题考查了列表法与树状图法以及概率公式,正确画出树状图是解题的关键.四、解答题1、(1);(2)【解析】【分析】(1)根据垂径定理可得,再由勾股定理可求得半径的长;(2)连接构造出,利用勾股定理可求得,再利用勾股定理解即可求得答案.【详解】解:(1)∵,∴∴设的半径∴∵在中,∴∴∴半径的长为.(2)连接,如图:∵是的直径∴,∵∴在中,∵∴在中,∴.【考点】本题考查了垂径定理、勾股定理、圆周角定理等,做出合适的辅助线是解题的关键.2、(1);(2)α+2β=90°,见解析【解析】【分析】(1)连接AB,由已知得到∠APB=∠APQ+BPQ=90°,根据圆周角定理证得AB是⊙O的直径,然后根据勾股定理求得直径,即可求得半径;(2)连接OA、OB、OQ,由证得∠APQ=∠BPQ,即可证得OQ⊥ON,然后根据三角形内角和定理证得2∠OPN+∠PON+∠NOQ=180°,,即可证得α+2β=90°.【详解】(1)连接AB,∵∠APQ=∠BPQ=45°,∴∠APB=∠APQ+BPQ=90°,∴AB是⊙O的直径,∴AB=,∴⊙O的半径为;(2)α+2β=90°,证明:连接OA、OB、OQ,∵∠APQ=∠BPQ,∴,∴∠AOQ=∠BOQ,∵OA=OB,∴OQ⊥AB,∵ON∥AB,∴NO⊥OQ,∴∠NOQ=90°,∵OP=OQ,∴∠OPN=∠OQP,∵∠OPN+∠OQP+∠PON+∠NOQ=180°,∴2∠OPN+∠PON+∠NOQ=180°,∴∠NOP+2∠OPN=90°,∵∠NOP=α,∠OPN=β,∴α+2β=90°.【解答】解:【点评】本题考查了圆周角定理,垂径定理,熟练掌握性质定理是解题的关键.3、(1)10%(2)9【解析】【分析】(1)设该水果每次降价的百分率为y,根据题意列出一元二次方程即可求解;(2)根据题意列出一元二次方程即可求解.(1)设该水果每次降价的百分率为y,依题意,得10(1-y)2=8.1,解得y1=0.1=10%,y2=1.9(不合题意,舍去).答:该水果每次降价的百分率为10%.(2)依题意,得,解得x1=9,x2=11(舍去).答:x的值为9.【考点】本题考查了一元二次方程的应用,准确理解题意列出一元二次方程是解答本题的关键.4、28°【解析】【分析】根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,根据解方程,可得答案.【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025第三人民医院透析新技术应用考核
- 哈尔滨市中医院内镜洗消质量督导员选拔专项考核试题
- 2025年系统解剖试题题库及答案
- 初中几何竞赛真题及答案
- 通辽市人民医院冷刀锥切术操作技能考核
- 白城市人民医院皮瓣移植护理考核
- 2025年乐理二级考试试题及答案
- 2025年客服二级考试试题及答案
- 国开(内蒙古)2025年《劳动人事政策与法规》形考作业1-3终考答案
- 对口高考文秘试卷及答案
- 锂离子电池企业供应链企业碳足迹核算指南
- 大学生法律基础知识课件
- Unit 4 What sounds can we hear Period 2 Explore 课件 三年级英语下册(沪教版2024)
- 新闻记者职业资格《新闻采编实务》考试题库(含答案)
- 图解自然资源部《自然资源领域数据安全管理办法》
- 股东之间股权转让合同协议书(2篇)
- PLC入门课程课件
- 港口液体危化品装卸管理人员理论考试题库(浓缩500题)
- 2024年深圳市龙华建设发展集团有限公司招聘笔试冲刺题(带答案解析)
- 药师竞聘正高述职报告
- 昇兴(安徽)包装有限公司年产 18 亿只铝制两片罐项目环境影响评价报告书
评论
0/150
提交评论