2023年河北省泊头市中考数学基础强化含答案详解(典型题)_第1页
2023年河北省泊头市中考数学基础强化含答案详解(典型题)_第2页
2023年河北省泊头市中考数学基础强化含答案详解(典型题)_第3页
2023年河北省泊头市中考数学基础强化含答案详解(典型题)_第4页
2023年河北省泊头市中考数学基础强化含答案详解(典型题)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省泊头市中考数学基础强化考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为()A. B. C. D.82、已知x1,x2是一元二次方程2x2-3x=5的两个实数根,下列结论错误的是()A.2-3x1=5 B.(x1-x2)(2x1+2x2-3)=0C.x1+x2= D.x1x2=3、下面四个立体图形中,从正面看是三角形的是()A. B. C. D.4、已知关于x的一元二次方程x2﹣3x+1=0有两个不相等的实数根x1,x2,则x12+x22的值是()A.﹣7 B.7 C.2 D.﹣25、的边经过圆心,与圆相切于点,若,则的大小等于()A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、如图,已知抛物线.将该抛物线在x轴及x轴下方的部分记作C1,将C1沿x轴翻折构成的图形记作C2,将C1和C2构成的图形记作C3.关于图形C3,给出的下列四个结论,正确的是(

)A.图形C3恰好经过4个整点(横、纵坐标均为整数的点)B.图形C3上任意一点到原点的最大距离是1C.图形C3的周长大于2πD.图形C3所围成区域的面积大于2且小于π2、下列命题正确的是(

)A.菱形既是中心对称图形又是轴对称图形B.的算术平方根是5C.如果一个多边形的各个内角都等于108°,则这个多边形是正五边形D.如果方程有实数根,则实数3、若为圆内接四边形,则下列哪个选项可能成立(

)A. B.C. D.4、下列说法中,不正确的是(

)A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心5、如图,二次函数y=ax2+bx+c的图象经过点A(﹣4,0),其对称轴为直线x=﹣1,下列结论正确的是(

)A.a+b+c<0B.abc<0C.2a+b=0D.若P(﹣6,y1),Q(m,y2)是抛物线上两点,且y1>y2,则﹣6<m<4第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为6m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为_____m2.2、已知关于的一元二次方程,有下列结论:①当时,方程有两个不相等的实根;②当时,方程不可能有两个异号的实根;③当时,方程的两个实根不可能都小于1;④当时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.3、如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A2021的横坐标是___________.4、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________.5、如图,AB为的弦,半径于点C.若,,则的半径长为______.四、简答题(2小题,每小题10分,共计20分)1、如图,矩形在平面直角坐标系中,交轴于点,动点从原点出发,以每秒1个单位长度的速度沿轴正方向移动,移动时间为秒,过点P作垂直于轴的直线,交于点M,交或于点N,直线扫过矩形的面积为.(1)求点的坐标;(2)求直线移动过程中到点之前的关于的函数关系式;(3)在直线移动过程中,第一象限的直线上是否存在一点,使是等腰直角三角形?若存在,直接写出点的坐标;若不存在,说明理由2、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.①当时,请直接写出“W区域”内的整点个数;②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.五、解答题(4小题,每小题10分,共计40分)1、如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.2、解方程(组):(1)(2);(3)x(x-7)=8(7-x).3、一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4随机摸取一个小球后,不放回,再随机摸出一个小球,分别求下列事件的概率:(1)两次取出的小球标号和为奇数;(2)两次取出的小球标号和为偶数.4、如图所示,是⊙的一条弦,,垂足为,交⊙于点,点在⊙上.()若,求的度数.()若,,求的长.-参考答案-一、单选题1、A【分析】过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点作于点,连接,AB是的直径,,,,在中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.2、D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】解:∵x1、x2是一元二次方程2x2-3x=5的两个实数根,∴,故A正确,不符合题意;这里a=2,b=-3,c=-5,∴,,∵,∴,∴,故B、C正确,不符合题意,D错误,符合题意.故选:D.【考点】本题考查了一元二次方程根的意义,根与系数的关系等,熟练掌握根与系数的关系,,是解题的关键.3、C【分析】找到从正面看所得到的图形为三角形即可.【详解】解:A、主视图为正方形,不符合题意;B、主视图为圆,不符合题意;C、主视图为三角形,符合题意;D、主视图为长方形,不符合题意.故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4、B【解析】【分析】根据一元二次方程的根与系数的关系可得x1+x2=3,x1x2=1,再把代数式x12+x22化为,再整体代入求值即可.【详解】解:根据根与系数的关系得x1+x2=3,x1x2=1,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×1=7.故选:B.【考点】本题考查的是一元二次方程的根与系数的关系,熟练的利用根与系数的关系求解代数式的值是解本题的关键.5、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接,,,与圆相切于点,,,故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.二、多选题1、ABD【解析】【分析】画出图象C3,以及以O为圆心,以1为半径的圆,再作出⊙O内接正方形,根据图象即可判断.【详解】解:如图所示,A.图形C3恰好经过(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4个整点,故正确;B.由图象可知,图形C3上任意一点到原点的距离都不超过1,故正确;C.图形C3的周长小于⊙O的周长,所以图形C3的周长小于2π,故错误;D.图形C3所围成的区域的面积小于⊙O的面积,大于⊙O内接正方形的面积,所以图形C3所围成的区域的面积大于2且小于π,故正确;故选:ABD.【考点】本题考查了二次函数的图象与几何变换,数形结合是解题的关键.2、AD【解析】【分析】利用菱形的对称性、算术平方根的定义、多边形的内角和、一元二次方程根的判别式等知识分别判断后即可确定正确的选项.【详解】解:A、菱形既是中心对称图形又是轴对称图形,故命题正确,符合题意;B、的算术平方根是,故命题错误,不符合题意;C、若一个多边形的各内角都等于108°,各边也相等,则它是正五边形,故命题错误,不符合题意;D、对于方程,当a=0时,方程,变为2x+1=0,有实数根,当a≠0时,时,即,方程有实数根,综上所述,方程有实数根,则实数,故命题正确,符合题意.故选:AD.【考点】考查了命题与定理的知识,解题的关键是了解算术平方根的定义、菱形的对称性、多边形的内角和、一元二次方程根的判别式等知识,难度不大.3、BD【解析】【分析】根据圆内接四边形的性质得出∠A+∠C=∠B+∠D=180°,再逐个判断即可.【详解】解:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本选项不符合题意;B.∵,∴∠A+∠C=∠B+∠D,故本选项符合题意;C.∵,∴∠A+∠C≠∠B+∠D,故本选项不符合题意;D.∵,∴∠A+∠C=∠B+∠D,故本选项符合题意;故选:BD.【考点】本题考查了圆周角定理和圆内接四边形的性质,注意:圆内接四边形的对角互补.4、ABC【解析】【分析】根据垂径定理的推论,即如果一条直线满足:①垂直于弦,②平分弦,③过圆心,④平分优弧,⑤平分劣弧中的两个条件,即可推论出其余三个,逐一进行判断即可.【详解】解:A、由于直径也是弦,所以平分一条直径的弦不一定垂直这条直径,选项说法错误,符合题意;B、平分一条弧的直线不一定垂直于这条弧,应该是:过圆心,且平分一条弧的直线垂直于这条弧所对的弦,选项说法错误,符合题意;C、弦的垂线不一定经过这条弦所在的圆心,应该是:弦的垂直平分线必经过这条弦所在的圆心,选项说法错误,符合题意;D、在一个圆内,平分一条弧和它所对弦的直线必经过这个圆的圆心,选项说法正确,不符合题意;故选ABC.【考点】本题考查了垂径定理,解题的关键是掌握垂径定理及其推论.5、ABD【解析】【分析】根据题意可得点A(﹣4,0)关于对称轴的对称点,从而得到当时,,再由,可得在对称轴右侧随的增大而增大,从而得到当时,;根据图象可得,,可得;再由,可得;然后根据P(﹣6,y1)关于对称轴的对称点,可得当y1>y2时,﹣6<m<4,即可求解.【详解】解:∵二次函数y=ax2+bx+c的图象经过点A(﹣4,0),其对称轴为直线x=﹣1,∴点A(﹣4,0)关于对称轴的对称点,即当时,,∵抛物线开口向上,∴,∴在对称轴右侧随的增大而增大,∴当时,,故A正确;∵抛物线与交于负半轴,∴,∵对称轴为直线x=﹣1,,∴,即,∴,故B正确;∵,∴,故C错误;∵P(﹣6,y1)关于对称轴的对称点,∴当y1>y2时,﹣6<m<4,故D正确.故选:ABD【考点】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,并利用数形结合思想解答是解题的关键.三、填空题1、8.4【分析】首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.【详解】解:假设不规则图案面积为xm2,由已知得:长方形面积为24m2,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:=0.35,解得x=8.4.估计不规则图案的面积大约为8.4m2.故答案为:8.4.【点睛】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.2、①③④【解析】【分析】由根的判别式,根与系数的关系进行判断,即可得到答案.【详解】解:根据题意,∵一元二次方程,∴;∴当,即时,方程有两个不相等的实根;故①正确;当,解得:,方程有两个同号的实数根,则当时,方程可能有两个异号的实根;故②错误;抛物线的对称轴为:,则当时,方程的两个实根不可能都小于1;故③正确;由,则,解得:或;故④正确;∴正确的结论有①③④;故答案为:①③④.【考点】本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关系,解题的关键是掌握所学的知识进行解题.3、22020【分析】根据,,点的坐标是,得,点的横坐标是,点的横坐标是-,同理可得点的横坐标是,点的横坐标是,点的横坐标是,点的横坐标是,点的横坐标是,依次进行下去,可得点的横坐标,进而求得的横坐标.【详解】解:∵∠OA0A1=90°,∠A1OA0=60°,点A0的坐标是(1,0),∴OA0=1,∴点A1的横坐标是1=20,∴OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,∴OA2=2OA1=4,∴点A2的横坐标是-OA2=-2=-21,依次进行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:点A3的横坐标是﹣2OA2=﹣8=﹣23,点A4的横坐标是﹣8=﹣23,点A5的横坐标是OA5=×2OA4=2OA3=4OA2=16=24,点A6的横坐标是2OA5=2×2OA4=23OA3=64=26,点A7的横坐标是64=26,…发现规律,6次一循环,即,,2021÷6=336……5则点A2021的横坐标与的坐标规律一致是22020.故答案为:22020.【点睛】本题考查了规律型——点的坐标,解决本题的关键是理解动点的运动过程,总结规律,发现规律,点A3n在轴上,且坐标为.4、【解析】【分析】连接OC交AB于点D,再连接OA.根据轴对称的性质确定,OD=CD;再根据垂径定理确定AD=BD;再根据勾股定理求出AD的长度,进而即可求出AB的长度.【详解】解:如下图所示,连接OC交AB于点D,再连接OA.∵折叠后弧的中点与圆心重叠,∴,OD=CD.∴AD=BD.∵圆形纸片的半径为10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案为:.【考点】本题考查轴对称的性质,垂径定理,勾股定理,综合应用这些知识点是解题关键.5、5【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,再连接OA,在Rt△OAC中利用勾股定理求出r的值即可.【详解】解:∵⊙O的弦AB=8,半径OD⊥AB,∴AC=AB=×8=4,设⊙O的半径为r,则OC=r-CD=r-2,连接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.四、简答题1、(1);(2);(3)存在.【解析】【分析】(1)由,且AB=6即可求出AO的长,再由勾股定理即可求出BO的长,即可求出A和B点坐标.(2)P点从原点出发,在到达终点前,直线l扫过的面积始终为平行四边形BMNE,故求该平行四边的底BE和高OP,相乘即得到面积S;由,且AB=6,可求出AC=10,过D点作DF⊥x轴,易证,求出CF=AO,进而求出OF的长;由,故,求出OE的长,进而求出OB+OE=BE.(3)分类讨论,当B为直角顶角时,过Q1点作QH⊥y轴,此时△Q1HB≌△BOC,即可求出Q1的坐标;当Q2为直角顶角时,过Q2点作QM⊥y轴,QN⊥x轴,此时Q2MB≌Q2NC,即可求出Q2的坐标.【详解】解:(1)由题意可得故答案为:(2)过点作轴,垂足为F,则

∴∵∴,故,求得.当时,直线扫过的图形是平行四边形,故答案为:.存在,.如下图所示:情况一:当B为直角顶角时,此时BQ1=BC,过Q1点作Q1H1⊥y轴于H1,∴∠Q1H1B=∠BOC=90°,且BQ1=BC,∵∠Q1BC=90°∴∠H1BQ1+∠OBC=90°又∠BCO+∠OBC=90°∴∠H1BO1=∠BCO在△Q1H1B和△BOC中:,∴△△Q1H1B≌△BOC(AAS)∴Q1H1=BO=,BH1=OC=,∴OH1=∴情况二:当Q2为直角顶角时,此时有Q2B=Q2C,过Q2点分别作Q2M⊥y轴,Q2N⊥x轴∴∠MQ2B+∠BQ2N=90°又∴∠NQ2C+∠BQ2N=90°∴∠MQ2B=∠NQ2C在△MQ2B和△NQ2C中,∴△MQ2B≌△NQ2C(AAS)∴MQ2=NQ2=OM=ON,且∠MON=90°∴四边形Q2MON为正方形,设MB=NC=a则OC-a=ON=OB=,且OC=∴求得a=,∴ON=OM=OB+a=∴故答案为:和【考点】本题考查了三角函数求值、平行四边形的面积公式、三角形全等、等腰直角三角形等相关知识,利用锐角相等,其对应的三角函数值相同,可列出比例求解未知线段长.2、(1)顶点P的坐标为;(2)①6个;②,.【解析】【分析】(1)由抛物线解析式直接可求;(2)①由已知可知A(0,2),C(2+,-2),画出函数图象,观察图象可得;②分两种情况求:当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a=,则<a≤1;当a<0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1≤a<-.【详解】解:(1)∵y=ax2-4ax+2a=a(x-2)2-2a,∴顶点为(2,-2a);(2)如图,①∵a=2,∴y=2x2-8x+2,y=-2,∴A(0,2),C(2+,-2),∴有6个整数点;②当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,,;∴.当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,;∴.∴综上所述:,.【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.五、解答题1、(1),M(,);(2),(,);(3)证明见试题解析.【解析】【详解】试题分析:(1)利用配方法把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶点坐标;(2)连接BC,则BC与对称轴的交点为R,此时CR+AR的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,).根据NPAB=,列出方程,解方程得到点P坐标,再计算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切线的判定定理即可证明直线MP是⊙N的切线.试题解析:(1)∵=,∴抛物线的解析式化为顶点式为:,顶点M的坐标是(,);(2)∵,∴当y=0时,,解得x=1或6,∴A(1,0),B(6,0),∵x=0时,y=﹣3,∴C(0,﹣3).连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC==.设直线BC的解析式为,∵B(6,0),C(0,﹣3),∴,解得:,∴直线BC的解析式为:,令x=,得y==,∴R点坐标为(,);(3)设点P坐标为(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB为直径的⊙N的半径为AB=,∴NP=,即,移项得,,得:,整理得:,解得(与A重合,舍去),,(在对称轴的右侧,舍去),(与B重合,舍去),∴点P坐标为(2,2).∵M(,),N(,0),∴==,==,==,∴,∴∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论