2023年度辽宁省灯塔市中考数学模拟试题含答案详解【考试直接用】_第1页
2023年度辽宁省灯塔市中考数学模拟试题含答案详解【考试直接用】_第2页
2023年度辽宁省灯塔市中考数学模拟试题含答案详解【考试直接用】_第3页
2023年度辽宁省灯塔市中考数学模拟试题含答案详解【考试直接用】_第4页
2023年度辽宁省灯塔市中考数学模拟试题含答案详解【考试直接用】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省灯塔市中考数学模拟试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、把方程x2+2x=5(x﹣2)化成ax2+bx+c=0的形式,则a,b,c的值分别为()A.1,﹣3,2 B.1,7,﹣10 C.1,﹣5,12 D.1,﹣3,102、关于函数,下列说法:①函数的最小值为1;②函数图象的对称轴为直线x=3;③当x≥0时,y随x的增大而增大;④当x≤0时,y随x的增大而减小,其中正确的有()个.A.1 B.2 C.3 D.43、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是(

)A. B.C. D.4、对于抛物线,下列说法正确的是()A.抛物线开口向上B.当时,y随x增大而减小C.函数最小值为﹣2D.顶点坐标为(1,﹣2)5、已知⊙O的半径为4,点O到直线m的距离为d,若直线m与⊙O公共点的个数为2个,则d可取()A.5 B.4.5 C.4 D.0二、多选题(5小题,每小题3分,共计15分)1、下列方程中是一元二次方程的有(

)A.B.C.D.E.F.2、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+173、已知关于的方程,下列说法不正确的是(

)A.当时,方程无解 B.当时,方程有两个相等的实数根C.当时,方程有两个相等的实数根 D.当时,方程有两个不相等的实数根4、下列方程一定不是一元二次方程的是(

)A. B.C. D.5、下列四个说法中,不正确的是(

)A.一元二次方程有实数根B.一元二次方程有实数根C.一元二次方程有实数根D.一元二次方程x2+4x+5=a(a≥1)有实数根第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,是等边三角形,点D为BC边上一点,,以点D为顶点作正方形DEFG,且,连接AE,AG.若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为________.2、如果关于x的方程x2﹣3x+k=0(k为常数)有两个相等的实数根,那么k的值是___.3、抛物线的图象和轴有交点,则的取值范围是______.4、若关于x的一元二次方程的根的判别式的值为4,则m的值为_____.5、已知函数y的图象如图所示,若直线y=kx﹣3与该图象有公共点,则k的最大值与最小值的和为_____.四、解答题(6小题,每小题10分,共计60分)1、解方程(组):(1)(2);(3)x(x-7)=8(7-x).2、解关于y的方程:by2﹣1=y2+2.3、解下列方程.(1)x2+2x=0;(2)2x2-3x-1=0.4、已知P为⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若∠APQ=∠BPQ(1)如图1,当∠APQ=45°,AP=1,BP=2时,求⊙O的半径。(2)如图2,连接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,设∠NOP=α,∠OPN=β,若AB平行于ON,探究α与β的数量关系。5、为帮助人民应对疫情,某药厂下调药品的价格某种药品经过连续两次降价后,由每盒元下调至元,已知每次下降的百分率相同.(1)求这种药品每次降价的百分率是多少?(2)已知这种药品的成本为元,若按此降价幅度再一次降价,药厂是否亏本?6、已知抛物线y=ax2+3ax+c(a≠0)与y轴交于点A(1)若a>0①当a=1,c=-1,求该抛物线与x轴交点坐标;②点P(m,n)在二次函数抛物线y=ax2+3ax+c的图象上,且n-c>0,试求m的取值范围;(2)若抛物线恒在x轴下方,且符合条件的整数a只有三个,求实数c的最小值;(3)若点A的坐标是(0,1),当-2c<x<c时,抛物线与x轴只有一个公共点,求a的取值范围.-参考答案-一、单选题1、D【解析】【分析】先把x2+2x=5(x﹣2)化简,然后根据一元二次方程的一般形式即可得到a、b、c的值.【详解】解:x2+2x=5(x﹣2),x2+2x=5x﹣10,x2+2x﹣5x+10=0,x2﹣3x+10=0,则a=1,b=﹣3,c=10,故选:D.【考点】此题主要考查了一元二次方程化为一般形式,熟练掌握一元二次方程的一般形式是解题的关键.2、B【解析】【分析】根据所给函数的顶点式得出函数图象的性质从而判断选项的正确性.【详解】解:∵,∴该函数图象开口向上,有最小值1,故①正确;函数图象的对称轴为直线,故②错误;当x≥0时,y随x的增大而增大,故③正确;当x≤﹣3时,y随x的增大而减小,当﹣3≤x≤0时,y随x的增大而增大,故④错误.故选:B.【考点】本题考查二次函数的性质,解题的关键是能够根据函数解析式分析出函数图象的性质.3、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可.【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线是y=2(x−2)2;由“上加下减”的原则可知,抛物线y=2(x−2)2向下平移1个单位所得抛物线是y=2(x−2)2−1.故选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.4、B【解析】【分析】根据二次函数图象的性质对各项进行分析判断即可.【详解】解:抛物线解析式可知,A、由于,故抛物线开口方向向下,选项不符合题意;B、抛物线对称轴为,结合其开口方向向下,可知当时,y随x增大而减小,选项说法正确,符合题意;C、由于抛物线开口方向向下,故函数有最大值,且最大值为-2,选项不符合题意;D、抛物线顶点坐标为(-1,-2),选项不符合题意.故选:B.【考点】本题主要考查了二次函数的性质,解题关键是熟练运用抛物线的开口方向、对称轴、顶点坐标以及二次函数图象的增减性解题.5、D【解析】【分析】根据直线和圆的位置关系判断方法,可得结论.【详解】∵直线m与⊙O公共点的个数为2个∴直线与圆相交∴d<半径=4故选D.【考点】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r,③直线l和⊙O相离⇔d>r.二、多选题1、BCD【解析】【分析】根据一元二次方程的定义对6个选项逐一进行分析.【详解】A中最高次数是3不是2,故本选项错误;B符合一元二次方程的定义,故本选项正确;C原式可化为4x2—=0,符合一元二次方程的定义,故本选项正确;D原式可化为2x2十x-1=0,符合一元二次方程的定义,故本选项正确;E原式可化为2x+1=0,不符合一元二次方程的定义,故本选项错误;Fax2+bx+c=0,只有在满足a≠0的条件下才是一元二次方程,故本选项错误.故答案为:BCD【考点】本题考查了一元二次方程的概念,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特别要注意a≠0的条件,这是在做题过程中容易忽视的知识点.2、ACD【解析】【分析】根据图象左移加,右移减,图象上移加,下移减,可得答案.【详解】解:A、y=x2−1,先向上平移1个单位得到y=x2,再向上平移1个单位可以得到y=x2+1,故A符合题意;B、y=x2+6x+5=(x+3)2−4,右移3个单位,再上移5得到y=x2+1,故B不符合题意;C、y=x2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2−2)2=x2,再向上平移1个单位得到y=x2+1,故C符合题意;D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4−2)2+1,再向右平移1个单位得到y=(x+4−2-2)2+1=x2+1,故D符合题意.故选:ACD.【考点】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反.3、ABD【解析】【分析】利用k的值,分别代入求出方程的根的情况即可.【详解】关于的方程,A当k=0时,x-1=0,则x=1,故此选项错误,符合题意;B当k=1时,-1=0,x=±1,方程有两个不相等的实数解,故此选项错误,符合题意;C当k=-1时,,则,,此时方程有两个相等的实数根,故此选项正确,不符合题意;D当时,根据A选项,若k=0,此时方程有一个实数根,故此选项错误,符合题意,故选:ABD.【考点】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键.4、AB【解析】【分析】根据只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【详解】解:A、分母含有未知数,一定不是一元二次方程,故本选项符合题意;B、含有两个未知数,一定不是一元二次方程,故本选项符合题意;C、当a=0时,不是一元二次方程,当a≠0时,是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项不符合题意.故选:AB.【考点】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.5、ABC【解析】【分析】判断上述方程的根的情况,只要看根的判别式△的值的符号就可以了.【详解】解:、△,方程无实数根,错误,符合题意;、△,方程无实数根,错误,符合题意;、△,方程无实数根,错误,符合题意;、△,方程有实数根,正确,不符合题意;故选:ABC.【考点】本题考查了一元二次方程根的情况与判别式△的关系:解题的关键是掌握(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.三、填空题1、8【解析】【分析】过点A作于M,由已知得出,得出,由等边三角形的性质得出,,得出,在中,由勾股定理得出,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,,即此时AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出.【详解】过点A作于M,∵,∴,∴,∵是等边三角形,∴,∵,∴,∴,在中,,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,,即此时AE取最小值,在中,,∴在中,;故答案为8.【考点】本题考查了旋转的性质、正方形的性质、等边三角形的性质、勾股定理以及最小值问题;熟练掌握正方形的性质和等边三角形的性质是解题的关键.2、【解析】【分析】根据判别式的意义得到Δ=(-3)2-4k=0,然后解一元一次方程即可.【详解】解:根据题意得Δ=(-3)2-4k=0,解得k=.故答案为.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.3、且【解析】【分析】由题意知,,计算求解即可.【详解】解:由题意知,解得故答案为:且.【考点】本题考查了二次函数与轴的交点个数.解题的关键在于熟练掌握二次函数与轴的交点个数.4、【解析】【分析】利用根的判别式,建立关于m的方程求得m的值.【详解】关于x的一元二次方程的根的判别式的值为4,∵,,,,解得.故答案为:.【考点】本题考查了一元二次方程(a≠0)的根的判别式.5、17【解析】【分析】根据题意可知,当直线经过点(1,12)时,直线y=kx-3与该图象有公共点;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,可得出k的最大值是15,最小值是2,即可得它们的和为17.【详解】解:当直线经过点(1,12)时,12=k-3,解得k=15;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,整理得x2-(10+k)x+36=0,∴10+k=±12,解得k=2或k=-22(舍去),∴k的最大值是15,最小值是2,∴k的最大值与最小值的和为15+2=17.故答案为:17.【考点】本题考查分段函数的图象与性质,一次函数图象上点的坐标特征,结合图象求出k的最大值和最小值是解题的关键.四、解答题1、(1)(2)x=-(3)x1=7,x2=-8【解析】【分析】(1)根据代入消元法,可得方程组的解;(2)根据等式的性质,化为整式方程,根据解整式方程,可得答案;(3)先移项,再提公因式,再求解即可.(1)由①,得y=3x+4③将③代入②,得x-2(3x+4)=-3,解得x=-1,将x=-1代入③,解得y=1.所以原方程组的解为;(2);解:方程两边都乘(x+1)(x-1),得(x-1)2-3=(x+1)(x-1),解得x=-.经检验,x=-是原方程的解.(3)x(x-7)=8(7-x).解:原方程可变形为x(x-7)+8(x-7)=0,(x-7)(x+8)=0.x-7=0,或x+8=0.∴x1=7,x2=-8.【考点】本题考查了解二元一次方程组、分式方程及一元二次方程,利用等式的性质得出整式方程是解题关键,要检验分时方程的根.2、当b>1时,原方程的解为y=±;当b≤1时,原方程无实数解.【解析】【分析】把b看做常数根据解方程的步骤:先移项,再合并同类项,系数化为1,即可得出答案.【详解】解:移项得:by2﹣y2=2+1,合并同类项得:(b﹣1)y2=3,当b=1时,原方程无解;当b>1时,原方程的解为y=±;当b<1时,原方程无实数解.【考点】此题主要考查一元二次方程的求解,解题的关键是根据题意分类讨论.3、(1)x1=-2,x2=0.(2)x1=,x2=【解析】【分析】(1)采用因式分解法即可求解;(2)直接用公式法即可求解.(1)原方程左边因式分解,得:,即有:x1=-2,x2=0;(2)∵,∴,∴,.【考点】本题考查了用因式分解法和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键.4、(1);(2)α+2β=90°,见解析【解析】【分析】(1)连接AB,由已知得到∠APB=∠APQ+BPQ=90°,根据圆周角定理证得AB是⊙O的直径,然后根据勾股定理求得直径,即可求得半径;(2)连接OA、OB、OQ,由证得∠APQ=∠BPQ,即可证得OQ⊥ON,然后根据三角形内角和定理证得2∠OPN+∠PON+∠NOQ=180°,,即可证得α+2β=90°.【详解】(1)连接AB,∵∠APQ=∠BPQ=45°,∴∠APB=∠APQ+BPQ=90°,∴AB是⊙O的直径,∴AB=,∴⊙O的半径为;(2)α+2β=90°,证明:连接OA、OB、OQ,∵∠APQ=∠BPQ,∴,∴∠AOQ=∠BOQ,∵OA=OB,∴OQ⊥AB,∵ON∥AB,∴NO⊥OQ,∴∠NOQ=90°,∵OP=OQ,∴∠OPN=∠OQP,∵∠OPN+∠OQP+∠PON+∠NOQ=180°,∴2∠OPN+∠PON+∠NOQ=180°,∴∠NOP+2∠OPN=90°,∵∠NOP=α,∠OPN=β,∴α+2β=90°.【解答】解:【点评】本题考查了圆周角定理,垂径定理,熟练掌握性质定理是解题的关键.5、(1);(2)不亏本,见解析【解析】【分析】(1)设这种药品每次降价的百分率是,根据该药品的原价及经过两次降价后的价格,即可得出关于的一元二次方程,求解即可得出结论;(2)根据经过连续三次降价

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论