2023年云南省弥勒市中考数学试题往年题考附答案详解_第1页
2023年云南省弥勒市中考数学试题往年题考附答案详解_第2页
2023年云南省弥勒市中考数学试题往年题考附答案详解_第3页
2023年云南省弥勒市中考数学试题往年题考附答案详解_第4页
2023年云南省弥勒市中考数学试题往年题考附答案详解_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省弥勒市中考数学试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为()A.64° B.52° C.42° D.36°2、把四张扑克牌所摆放的顺序与位置如下,小杨同学选取其中一张扑克牌把他颠倒后在放回原来的位置,那么扑克牌的摆放顺序与位置都没变化,那么小杨同学所选的扑克牌是(

)A. B. C. D.3、已知⊙O的半径为4,,则点A在()A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定4、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是()A. B.C. D.5、如图图案中,不是中心对称图形的是()A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、下表中列出的是一个二次函数的自变量与函数的几组对应值:…013……6…下列各选项中,正确的是(

)A.函数图象的开口向下 B.当时,的值随的增大而增大C.函数的图象与轴无交点 D.这个函数的最小值小于2、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+173、如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,则下列结论中正确的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°4、已知:如图,△ABC中,∠A=60°,BC为定长,以BC为直径的⊙O分别交AB、AC于点D、E.连接DE、OE.下列结论中正确的结论是()A.BC=2DE B.D点到OE的距离不变 C.BD+CE=2DE D.AE为外接圆的切线5、下列方程不适合用因式方程解法解的是(

)A.x2-3x+2=0 B.2x2=x+4C.(x-1)(x+2)=70 D.x2-11x-10=0第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,与x轴交于、两点,,点P是y轴上的一个动点,PD切于点D,则△ABD的面积的最大值是________;线段PD的最小值是________.2、一个直角三角形的两条直角边相差5cm,面积是7cm2,则其斜边的长是___.3、抛物线的开口方向向______.4、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.5、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.四、简答题(2小题,每小题10分,共计20分)1、如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.

2、如图,∠1=∠2=∠3,试找出图中两对相似三角形,并说明为什么?五、解答题(4小题,每小题10分,共计40分)1、如图,四边形ABCD内接于⊙O,AC是直径,点C是劣弧BD的中点.(1)求证:.(2)若,,求BD.2、受“新冠”疫情的影响,某销售商在网上销售A、B两种型号的“手写板”,获利颇丰.已知A型,B型手写板进价、售价和每日销量如表格所示:进价(元/个)售价(元/个)销量(个/日)A型600900200B型8001200400根据市场行情,该销售商对A手写板降价销售,同时对B手写板提高售价,此时发现A手写板每降低5就可多卖1,B手写板每提高5就少卖1,要保持每天销售总量不变,设其中A手写板每天多销售x,每天总获利的利润为y(1)求y、x间的函数关系式并写出x取值范围;(2)要使每天的利润不低于234000元,直接写出x的取值范围;(3)该销售商决定每销售一个B手写板,就捐a元给因“新冠疫情”影响的困难家庭,当时,每天的最大利润为229200元,求a的值.3、已知抛物线.(1)该抛物线的对称轴为;(2)若该抛物线的顶点在x轴上,求抛物线的解析式;(3)设点M(m,),N(2,)在该抛物线上,若>,求m的取值范围.4、已知:如图,△ABC中,AB=AC,AB>BC.求作:线段BD,使得点D在线段AC上,且∠CBD=∠BAC.作法:①以点A为圆心,AB长为半径画圆;②以点C为圆心,BC长为半径画弧,交⊙A于点P(不与点B重合);③连接BP交AC于点D.线段BD就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接PC.∵AB=AC,∴点C在⊙A上.∵点P在⊙A上,∴∠CPB=∠BAC.()(填推理的依据)∵BC=PC,∴∠CBD=.()(填推理的依据)∴∠CBD=∠BAC.-参考答案-一、单选题1、B【分析】先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.【详解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面内绕点A旋转到△AB′C′的位置,∴∠CAC′等于旋转角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋转角为52°.故选:B.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.2、D【解析】【分析】根据题意,图形是中心对称图形即可得出答案.【详解】由题意可知,图形是中心对称图形,可得答案为D,故选:D.【考点】本题考查了图形的中心对称的性质,掌握中心图形的性质是解题的关键.3、C【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.【详解】解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,∴d>r,∴点A在⊙O外,故选:C.【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.4、A【分析】设正六边形的边长为1,当在上时,过作于而求解此时的函数解析式,当在上时,延长交于点过作于并求解此时的函数解析式,当在上时,连接并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.【详解】解:设正六边形的边长为1,当在上时,过作于而当在上时,延长交于点过作于同理:则为等边三角形,当在上时,连接由正六边形的性质可得:由正六边形的对称性可得:而由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.5、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C.【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.二、多选题1、BD【解析】【分析】根据抛物线经过点(0,-4),(3,-4)可得抛物线对称轴为直线,由抛物线经过点(-2,6)可得抛物线开口向上,进而求解.【详解】解:∵抛物线经过点(0,-4),(3,-4),∴抛物线对称轴为直线,∵抛物线经过点(-2,6),∴当x<时,y随x增大而减小,∴抛物线开口向上,且跟x轴有交点,故A,C错误,不符合题意;∴x>时,y随x增大而增大,故B正确,符合题意;由对称性可知,在处取得最小值,且最小值小于-6.故D正确,符合题意.故选:BD.【考点】本题考查二次函数的图象与性质,解题关键是掌握二次函数与方程的关系.2、ACD【解析】【分析】根据图象左移加,右移减,图象上移加,下移减,可得答案.【详解】解:A、y=x2−1,先向上平移1个单位得到y=x2,再向上平移1个单位可以得到y=x2+1,故A符合题意;B、y=x2+6x+5=(x+3)2−4,右移3个单位,再上移5得到y=x2+1,故B不符合题意;C、y=x2+4x+4=(x+2)2,先向右平移2个单位得到y=(x+2−2)2=x2,再向上平移1个单位得到y=x2+1,故C符合题意;D、y=x2+8x+17=(x+4)2+1,先向右平移2个单位得到y=(x+4−2)2+1,再向右平移1个单位得到y=(x+4−2-2)2+1=x2+1,故D符合题意.故选:ACD.【考点】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反.3、ABCD【解析】【分析】连接OD,CD是⊙O的切线,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等边三角形,∠C=∠BDC=30°,再结合在直角三角形中300所对的直角边等于斜边的一半,继而得到结论.【详解】解:如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故选项D成立;∴△OBD是等边三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故选项B成立;∴AB=2BC,故选项C成立;∴∠A=∠C,∴DA=DC,故选项A成立;综上所述,故选项ABCD均成立,故选:ABCD.【考点】本题考查了圆的有关性质的综合应用,在本题中借用切线的性质,求得相应角的度数是解题的关键.4、AB【解析】【分析】连接OD,可证明△ODE是等边三角形,所以A,B正确;通过举反例:当重合,时,可得:<可得C不一定成立,根据切线的定义,可得D不正确,从而可得答案.【详解】解:连接OD,∵∠A=60°∴∠B+∠C=120°,的度数为∵的度数为∴的度数为∴∠DOE=60°,又OD=OE,∴△ODE是等边三角形,即所以A正确,符合题意;则D到OE的长度是等边△ODE的高,而等边的边长等于圆的半径,则高一定是一个定值,因而B正确,符合题意;如图:当重合,时,则为的切线,同理可得:此时则为的直径,>此时<所以C不符合题意;与的外接圆有两个交点,不是外接圆的切线,所以D不符合题意;故选:AB.【考点】本题考查的是圆的基本性质,圆弧的度数与其所对的圆周角的度数之间的关系,切线的概念的理解,等边三角形的判定与性质,灵活运用以上知识解题是解题的关键.5、ABD【解析】【分析】根据因式分解法解一元二次方程的方法求解即可.【详解】解:A、x2-3x+2=0,适用公式法,不适合用因式分解法来解题,符合题意;B、2x2=x+4,适用公式法,不适合用因式分解法来解题,符合题意;C、(x-1)(x+2)=70,即,可得,故适合用因式分解法来解题,不符合题意;D、x2-11x-10=0,适用公式法,不适合用因式分解法来解题,符合题意;故选:ABD.【考点】此题考查了解一元二次方程,解题的关键是熟练掌握解一元二次方程的方法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.三、填空题1、【分析】根据题中点的坐标可得圆的直径,半径为1,分析以AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得.【详解】解:如图所示:当点P到如图位置时,的面积最大,∵、,∴圆的直径,半径为1,∴以AB定长为底,点D在圆上,高最大为圆的半径,如图所示:此时面积的最大值为:;如图所示:连接AP,∵PD切于点D,∴,∴,设点,在中,,,∴,在中,,∴,则,当时,PD取得最小值,最小值为,故答案为:①;②.【点睛】题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键.2、cm【解析】【分析】设较短的直角边长是xcm,较长的就是(x+5)cm,根据面积是7cm,求出直角边长,根据勾股定理求出斜边长.【详解】解:设这个直角三角形的较短直角边长为xcm,则较长直角边长为(x+5)cm,根据题意,得,所以,解得,,因为直角三角形的边长为正数,所以不符合题意,舍去,所以x=2,当x=2时,x+5=7,由勾股定理,得直角三角形的斜边长为==cm.故答案为:cm.【考点】本题考查了勾股定理,一元二次方程的应用,关键是知道三角形面积公式以及直角三角形中勾股定理的应用.3、下【解析】【分析】根据二次函数二次项系数的大小判断即可;【详解】∵,∴抛物线开口向下;故答案是下.【考点】本题主要考查了判断抛物线的开口方向,准确分析判断是解题的关键.4、5或3【分析】分点P在圆内或圆外进行讨论.【详解】解:①当点P在圆内时,⊙O的直径长为8+2=10(cm),半径为5cm;②当点P在圆外时,⊙O的直径长为8-2=6(cm),半径为3cm;综上所述:⊙O的半径长为5cm或3cm.故答案为:5或3.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.5、①②④【分析】连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.【详解】解:连接OM,∵PE为的切线,∴,∵,∴,∴,∵,,∴,即AM平分,故①正确;∵AB为的直径,∴,∵,,∴,∴,∴,故②正确;∵,∴,∵,∴,∴的长为,故③错误;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,设,则,∴,在中,,∴,∴,由①可得,,故④正确,故答案为:①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.四、简答题1、(1)=;(2)证明见解析.【解析】【分析】(1)根据正方形的性质和相似三角形的判定定理,得△CEF∽△ADF,可得=,进而即可得到结论;(2)由AD∥CB,点E是BC的中点,得△EFC∽△DFA.CF:AF=EC:AD,由FG//AB,得CG:BG=CF:AF,进而即可得到结论.【详解】(1)∵,∴=.∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△CEF∽△ADF,∴=,∴==,∴==;(2)∵AD∥CB,点E是BC的中点,∴△EFC∽△DFA.∴CF:AF=EC:AD=1:2,∵FG⊥BC,∴FG//AB,∴CG:BG=CF:AF=1:2,∴CG=BG.【考点】本题主要考查正方形的性质,相似三角形的判定和性质定理以及平行线分线段成比例定理,掌握相似三角形的对应边成比例,是解题的关键.2、△AFD∽△EFB,△ABC∽△ADE;理由见解析.【解析】【分析】根据两个三角形的两组角对应相等,那么这两个三角形互为相似三角形证明即可.【详解】解:△AFD∽△EFB,△ABC∽△ADE.理由如下:∵∠2=∠3,∠AFD=∠EFB∴△AFD∽△EFB,∴∠B=∠D.∵∠1=∠2,∴,∴∠BAC=∠DAE,∴△ABC∽△ADE.【考点】本题考查相似三角形的判定定理,熟记判定定理,本题用到了两组角对应相等的两个三角形互为相似三角形.五、解答题1、(1)见详解;(2)【分析】(1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;(2)由题意易得,然后由(1)可知△ABD是等边三角形,进而问题可求解.【详解】(1)证明:∵AC是直径,点C是劣弧BD的中点,∴AC垂直平分BD,∴;(2)解:∵,,∴,∵,∴△ABD是等边三角形,∵,∴.【点睛】本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及圆周角定理是解题的关键.2、(1)(),且x为整数;(2),且x为整数;(3)a=30【解析】【分析】(1)根据题意列函数关系式和不等式组,于是得到结论;(2)根据题意列方程和不等式,于是得到结论;(3)根据题意列函数关系式,然后根据二次函数的性质即可得到结论.【详解】解:(1)由题意得,,解得,故的取值范围为且为整数;(2)的取值范围为.理由如下:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论