版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期中试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(7小题,每小题2分,共计14分)1、如图,E,F是正方形ABCD的边BC上两个动点,BE=CF.连接AE,BD交于点G,连接CG,DF交于点M.若正方形的边长为1,则线段BM的最小值是(
)A. B. C. D.2、如图,在矩形ABCD中,AB=3,BC=5,点E为CB上一动点(不与点C重合),将△CDE沿DE所在直线折叠,点C的对应点C'恰好落在AE上,则CE的长是()A. B.1 C.2 D.3、图,在△ABC中,AB=AC,四边形ADEF为菱形,O为AE,DF的交点,S△ABC=8,则S菱形ADEF=()A.4 B.4 C.4 D.44、妙妙上学经过两个路口,如果每个路口可直接通过和需等待的可能性相等,那么妙妙上学时在这两个路口都直接通过的概率是(
)A. B. C. D.5、下列选项中,矩形具有的性质是()A.四边相等 B.对角线互相垂直 C.对角线相等 D.每条对角线平分一组对角6、我们知道,四边形具有不稳定性,如图,在平面直角坐标系中,边长为2的正方形的边在x轴上,的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点处,则点C的对应点的坐标为(
)A. B. C. D.7、已知△ABC为等腰三角形,若BC=6,且AB,AC为方程x2﹣8x+m=0两根,则m的值等于()A.12 B.16 C.﹣12或﹣16 D.12或16二、多选题(3小题,每小题2分,共计6分)1、下列说法正确的是(
).A.对角线相等的菱形是正方形B.顺次连接对角线互相垂直的四边形的四边中点,所得到的四边形是菱形C.成轴对称的两个图形全等D.有三个角相等的四边形是矩形2、如图,在边长为4的正方形ABCD中,点E,F分别是边BC,AB的中点,连接AE,DF交于点N,将△ABE沿AE翻折,得到△AGE,AG交DF于点M,延长EG交AD的延长线于点H,连接CG,ME,取ME的中点为点O,连接NO,GO.则以下结论正确的有(
)A. B.C.△GEC为等边三角形 D.3、如图,分别以点A、B为圆心,同样长度为半径作圆弧,两弧相交于点C、D.连结AC、BC、AD、BD,则四边形ADBC一定是(
)A.矩形 B.菱形 C.正方形 D.平行四边形第Ⅱ卷(非选择题80分)三、填空题(10小题,每小题2分,共计20分)1、一菱形的对角线长分别为24cm和10cm,则此菱形的周长为________,面积为________.2、若正方形的对角线的长为4,则该正方形的面积为_________.3、写出一个一元二次方程,使它有两个不相等的实数根______.4、《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多尺,门的对角线长尺,那么门的高和宽各是多少?如果设门的宽为尺,根据题意,那么可列方程___________.5、对任意实数a,b,定义一种运算:,若,则x的值为_________.6、从分别标有A、B、C的3根纸签中随机抽取一根,然后放回,再随机抽取一根,两次抽签的所有可能结果的树形图如下:那么抽出的两根签中,一根标有A,一根标有C的概率是__________.7、如图,将矩形的四个角向内折起,恰好拼成一个无缝隙重叠的四边形,若,,则边的长是____.8、如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.9、已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.10、已知菱形的边长为,两条对角线的长度的比为3:4,则两条对角线的长度分别是_____________.四、解答题(6小题,每小题10分,共计60分)1、解方程:(1)x(x-3)-5(3-x)=0(2)2、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.3、已知关于的方程有实根.(1)求的取值范围;(2)设方程的两个根分别是,,且,试求的值.4、如图,四边形ABCD是正方形,点E在BC延长线上,DF⊥AE于点F,点G在AE上,且∠ABG=∠E.求证:AG=DF.5、如图,四边形ABCD是菱形,边长为10cm,对角线AC,BD交于点O,∠BAD=60°.(1)求对角线AC,BD的长;(2)求菱形的面积.6、如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.-参考答案-一、单选题1、D【解析】【分析】先证明△ABE≌△DCF(SAS),由全等三角形的性质得出∠BAE=∠CDF,证明△ABG≌△CBG(SAS),由全等三角形的性质得出∠BAG=∠BCG,取CD的中点O,连接OB、OF,则OF=CO=CD=,由勾股定理求出OB的长,当O、M、B三点共线时,BM的长度最小,则可求出答案.【详解】解:如图,在正方形ABCD中,AB=AD=CB,∠EBA=∠FCD,∠ABG=∠CBG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠BAE=∠CDF,在△ABG和△CBG中,,∴△ABG≌△CBG(SAS),∴∠BAG=∠BCG,∴∠CDF=∠BCG,∵∠DCM+∠BCG=∠FCD=90°,∴∠CDF+∠DCM=90°,∴∠DMC=180°﹣90°=90°,取CD的中点O,连接OB、OF,则OF=CO=CD=,在Rt△BOC中,OB===,根据三角形的三边关系,OF+BM>OB,∴当O、M、B三点共线时,BM的长度最小,∴BM的最小值=OB﹣OF==.故选:D.【考点】本题主要考查了直角三角形的性质,勾股定理,正方形的性质,全等三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.2、B【解析】【分析】由矩形的性质得出∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.【详解】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,AD=BC=5,CD=AB=3,由折叠的性质得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'==4,设CE=C'E=x,在Rt△ABE中,BE=5-x,AE=x+4,由勾股定理得:(5-x)2+32=(x+4)2,解得:x=1,故选:B.【考点】本题考查了翻折变换的性质、矩形的性质、勾股定理等知识;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程是解题的关键.3、C【解析】【分析】根据菱形的性质,结合AB=AC,得出DF为△ABC的中位线,DF∥BC,,从而得出AE为△ABC的高,得出,再根据菱形的面积公式,即可得出菱形的面积.【详解】解:∵四边形ADEF为菱形,∴EF∥AB,DE∥AC,AF=EF=DE=AD,AE⊥DF,∴,,,,,∴CF=EF,DE=DB,,,∴DF∥BC,,,,,,,即,,故C正确.故选:C.【考点】本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF为△ABC的中位线,是解题的关键.4、A【解析】【分析】根据题意画出树形图,求出在这两个路口都直接通过的概率为即可求解.【详解】解:由题意画树形图得,由树形图得共有4种等可能性,其中在这两个路口都直接通过的概率是P=.故选:A【考点】本题考查了列表或画树形图求概率,理解题意,正确列表或画树形图得到所有等可能的结果是解题关键.5、C【解析】【分析】根据矩形的性质逐项分析即可.【详解】A.四边相等是菱形的性质,不是矩形的性质,故不符合题意;B.对角线互相垂直是菱形的性质,不是矩形的性质,故不符合题意;C.对角线相等是是矩形的性质,故符合题意;D.每条对角线平分一组对角是菱形的性质,不是矩形的性质,故不符合题意;故选C.【考点】本题考查了矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分;6、D【解析】【分析】由已知条件得到,,根据勾股定理得到,于是得到结论.【详解】解:,,,,,,故选:D.【考点】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.7、D【解析】【分析】由△ABC为等腰三角形,BC=6,且AB,AC为方程x2﹣8x+m=0两根,可得两种情况:①BC=6=AB,把6代入方程得36﹣48+m=0②AB=AC,此时方程的判别式为0,分别求解即可.【详解】解:∵△ABC为等腰三角形,若BC=6,且AB,AC为方程x2﹣8x+m=0两根,则①BC=6=AB,把6代入方程得36﹣48+m=0,∴m=12;②AB=AC,此时方程的判别式为0,∴Δ=64﹣4m=0,∴m=16.故m的值等于12或16.故选:D.【考点】本题考查了一元二次方程的判别式和等腰三角形的性质,熟练掌握知识点是解题的关键.二、多选题1、AC【解析】【分析】根据正方形,矩形的判定,成轴对称图形的关系,对各选项进行判断即可;【详解】解:对角线相等的菱形是正方形,正确,符合题意;B顺次连接对角线互相垂直的四边形的四边中点,所得到的四边形是矩形,故原命题错误,不符合题意;C成轴对称的两个图形全等,正确,符合题意;D有四个角相等的四边形是矩形,错误,不符合题意.故答案为:A、C.【考点】本题考查了正方形,矩形的判定,成轴对称图形的关系.解题的关键在于对知识的灵活运用.2、ABD【解析】【分析】由正方形的性质可得,则易证,然后可判定A选项,由折叠的性质及平行线的性质可得B选项,由题意易得,进而根据三角形中线及等积法可判定D选项.【详解】解:∵四边形ABCD是正方形,∴,AD∥BC,∴,∵点E,F分别是边BC,AB的中点,∴,∴(SAS),∴,∵,∴,∴,由折叠性质可得,∴,∴,假设△GEC为等边三角形成立,则有,∴,∴,∴,∴与AB=2BE相矛盾,故假设不成立;由折叠的性质可知,∴,∴,∵ME的中点为点O,∴,∴;综上所述:正确的有ABD;故选ABD.【考点】本题主要考查全等三角形的性质与判定、正方形的性质、折叠性质及等积法,熟练掌握全等三角形的性质与判定、正方形的性质、折叠性质及等积法是解题的关键.3、BD【解析】【分析】根据四边相等的四边形是菱形即可判断.【详解】解:由作图可知:AC=AD=BC=BD,∴四边形ADBC是菱形且为平行四边形,故选:BD.【考点】本题考查基本作图,平行四边形的判定,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.三、填空题1、
52cm
120cm2【解析】【分析】根据菱形对角线互相平分且垂直得到边长,从而计算出周长,再根据面积公式计算出面积.【详解】解:∵菱形的对角线长分别为24cm和10cm,∴对角线的一半长分别为12cm和5cm,∴菱形的边长为:=13cm,∴菱形的周长为:13×4=52cm,面积为:×10×24=120cm2.故答案为:52cm,120cm2.【考点】此题主要考查学生对菱形的性质的理解及运用,属于基础题,关键是掌握菱形的面积等于对角线乘积的一半.2、8【解析】【分析】根据正方形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:∵正方形的一条对角线的长为4,∴这个正方形的面积=×4²=8.故答案为:8.【考点】本题考查了正方形的性质,熟练掌握正方形的面积的两种求法是解题的关键.3、x2+x﹣1=0(答案不唯一)【解析】【分析】这是一道开放自主题,只要写出的方程的Δ>0就可以了.【详解】解:比如a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=1+4=5>0,∴方程为x2+x﹣1=0.故答案为:x2+x﹣1=0(答案不唯一)【考点】本题考查了一元二次方程根的判别式,掌握“根的判别式大于0,方程有两个不相等的实数根”是解题的关键.4、或【解析】【分析】设门的宽为x尺,则门的高为(x+6)尺,利用勾股定理,即可得出关于x的一元二次方程,此题得解.【详解】解:设门的宽为x尺,则门的高为(x+6)尺,依题意得:即或.故答案为:或.【考点】本题考查了由实际问题抽象出一元二次方程以及勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.5、2或-3##-3或2【解析】【分析】根据题意得到关于x的一元二次方程,解方程即可.【详解】解:∵,∴,∴,解得或,故答案为:2或-3.【考点】本题主要考查了新定义下的实数运算,解一元二次方程,正确理解题意是解题的关键.6、【解析】【分析】依据树状图分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【详解】解:由树状图得:两次抽签的所有可能结果一共有9种情况,一根标有,一根标有的有,与,两种情况,一根标有,一根标有的概率是.故答案为:.【考点】本题考查的是用画树状图法求概率.画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.7、【解析】【分析】由折叠的性质和矩形的性质可得∠HEF=90°,EA=EB=3,证明△HNG≌△FME,求出HF,设AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【详解】解:∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,由折叠可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,FB=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四边形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,设AH=x,则HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案为:.【考点】本题考查了翻折变换,矩形的性质,勾股定理,全等三角形的判定和性质,利用勾股定理列出方程是本题的关键.8、20【解析】【分析】根据已知图形得出第n个图形中黑色三角形的个数为1+2+3++n=,列一元二次方程求解可得.【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∴第n个图形中黑色三角形的个数为1+2+3+4+5++n=,当共有210个小球时,,解得:或(不合题意,舍去),∴第个图形共有210个小球.故答案为:.【考点】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n个图形中黑色三角形的个数为1+2+3+……+n.9、2【解析】【详解】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.10、,【解析】【分析】如图BD:AC=3:4,AB=10cm,设BD=3x,则AC=4x,根据菱形的性质,DO=BO=,AO=CO=2x,在RtΔAOD中,AD2+DO2+AO2,,求出x,BD=3x,AC=4x即可.【详解】如图BD:AC=3:4,AB=10cm,设BD=3x,则AC=4x,根据菱形的性质,DO=BO=,AO=CO=2x,AC垂直BD在RtΔAOD中,AD2+DO2+AO2,,x=4,AC=4×4=16,BD=3×4=12,则两条对角线的长度分别是12cm,16cm.故答案为:12cm,16cm.【考点】本题考查菱形的对角线问题,掌握菱形的性质,利用对角线之间的关系,和勾股定理构造方程是解题关键.四、解答题1、(1);(2).【解析】【分析】根据因式分解法解一元二次方程的方法求解即可.【详解】解:(1)x(x-3)-5(3-x)=0解得:.(2)解得:.【考点】此题考查了因式分解法解一元二次方程的方法,解题的关键是熟练掌握因式分解法解一元二次方程的方法.2、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值.【详解】(1)∵关于x的一元二次方程x2-6x+(4m+1)=0有实数根,∴△=(-6)2-4×1×(4m+1)≥0,解得:m≤2;(2)∵方程x2-6x+(4m+1)=0的两个实数根为x1、x2,∴x1+x2=6,x1x2=4m+1,∴(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1.【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程.3、(1);(2)不存在【解析】【分析】(1)根据根的判别式即可求出答案.(2)根据根与系数的关系即可求出答案.【详解】解:(1)∵,,,∴,∴;(2)由题意可知:x1+x2=2,x1x2=,∵,∴,∴k=,∵,∴k=不符合题意,舍去,∴k的值不存在.【考点】本题考查了一元二次方程根的判别式,解题的关键是熟
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026秋季国家管网集团东部原油储运公司高校毕业生招聘考试备考试题(浓缩500题)及答案详解【历年真题】
- 2026国家管网集团高校毕业生招聘笔试参考题库(浓缩500题)附参考答案详解(突破训练)
- 2026秋季国家管网集团东部原油储运公司高校毕业生招聘考试参考题库(浓缩500题)含答案详解(突破训练)
- 2026秋季国家管网集团福建公司高校毕业生招聘考试备考试题(浓缩500题)含答案详解(培优a卷)
- 2026届国家管网集团高校毕业生招聘笔试模拟试题(浓缩500题)及答案详解(历年真题)
- 国家管网集团山东分公司2026届秋季高校毕业生招聘考试参考题库(浓缩500题)带答案详解(综合卷)
- 2025国网福建省电力公司高校毕业生提前批招聘笔试模拟试题浓缩500题含答案详解(模拟题)
- 新能源汽车市场潜力及发展前景
- 2026秋季国家管网集团甘肃公司高校毕业生招聘考试备考题库(浓缩500题)及参考答案详解(完整版)
- 2026秋季国家管网集团福建公司高校毕业生招聘笔试备考题库(浓缩500题)附参考答案详解(培优)
- 2025-2026学年大象版(2024)小学科学三年级上册(全册)教学设计(附目录P208)
- 融媒体概论课件
- 中央空调系统维护技术规范
- 固态相变原理及应用
- 脊柱损伤患者搬运课件
- 李清照的如梦令课件
- 正大杯全国大学生市场调查与分析大赛(试题340道含答案)
- 大学物业管理知识培训课程课件
- 假体周围骨折课件
- 建筑工程施工安全与技术管理相关知识试卷
- 2025年高等教育工学类自考-02382管理信息系统历年参考题库含答案解析(5套典型题)
评论
0/150
提交评论