




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《轴对称》定向测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在中,,,,,则的长为(
).A. B. C. D.2、如图,等边的顶点,,规定把等边“先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,顶点C的坐标为(
)A. B. C. D.3、如图,在中,,,点是边上任意一点,过点作交于点,则的度数是(
).A. B. C. D.4、下列图形中,是轴对称图形的是()A. B.C. D.5、如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为()A.10cm B.12cm C.15cm D.20cm第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,BD垂直平分线段AC,AE⊥BC,垂足为E,交BD于P点,AE=7cm,AP=4cm,则P点到直线AB的距离是_____.2、如图,分别以的边,所在直线为称轴作的对称图形和,,线段与相交于点O,连接、、、.有如下结论:①;②;③平分:④;③.其中正确的结论个数为______.3、如图,已知等边三角形ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在B′处,DB′,EB′分别交AC于点F,G.若∠ADF=80°,则∠DEG的度数为________.4、一辆汽车的牌照在车下方水坑中的像是,则这辆汽车的牌照号码应为_____.5、如图,过边长为16的等边△ABC的边AB上的一点P,作PE⊥AC于点E,点Q为BC延长线上一点,当PA=CQ时,连接PQ交AC边于点D,则DE的长为_____.三、解答题(5小题,每小题10分,共计50分)1、如图,是的角平分线,,交于点E.(1)求证:.(2)当时,请判断与的大小关系,并说明理由.2、如图,在中,,过的中点作,,垂足分别为点、.(1)求证:;(2)若,求的度数.3、如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.4、如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求的周长5、如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.-参考答案-一、单选题1、B【解析】【分析】根据等腰三角形性质求出∠B,求出∠BAC,求出∠DAC=∠C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案.【详解】∵AB=AC,∠C=30°,∴∠B=30°,∵AB⊥AD,AD=4cm,∴BD=8cm,∵∠ADB=60°∠C=30°,∴∠DAC=∠C=30°,∴CD=AD=4cm,∴BC=BD+CD=8+4=12cm.故选B.【考点】本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长.2、D【解析】【分析】先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标.【详解】∵△ABC是等边三角形AB=3-1=2∴点C到x轴的距离为1+,横坐标为2∴C(2,)由题意可得:第1次变换后点C的坐标变为(2-1,),即(1,),第2次变换后点C的坐标变为(2-2,),即(0,)第3次变换后点C的坐标变为(2-3,),即(-1,)第n次变换后点C的坐标变为(2-n,)(n为奇数)或(2-n,)(n为偶数),∴连续经过2021次变换后,等边的顶点的坐标为(-2019,),故选:D.【考点】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键.3、B【解析】【分析】根据等腰三角形的性质可得∠B=∠C,进而可根据三角形的内角和定理求出∠A的度数,然后根据平行线的性质可得∠DEC=∠A,进一步即可求出结果.【详解】解:∵,,∴∠B=∠C=65°,∴∠A=180°-∠B-∠C=50°,∵DF∥AB,∴∠DEC=∠A=50°,∴∠FEC=130°.故选:B.【考点】本题考查了等腰三角形的性质、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题的关键.4、C【解析】【分析】依据轴对称图形的定义逐项分析即可得出C选项正确.【详解】解:因为选项A、B、D中的图形都不能通过沿某条直线折叠直线两旁的部分能达到完全重合,所以它们不符合轴对称图形的定义和要求,因此选项A、B、D中的图形都不是轴对称图形,而C选项中的图形沿上下边中点的连线折叠后,折痕的左右两边能完全重合,因此符合轴对称图形的定义和要求,因此C选项中的图形是轴对称图形,故选:C.【考点】本题主要考查了轴对称图形的定义,学生需要掌握轴对称图形的定义内容,理解轴对称图形的特征,方能解决问题找对图形,同时也考查了学生对图形的感知力和空间想象的能力.5、C【解析】【分析】根据图形翻折变换的性质得出AD=BD,故AC+(CD+AD)=AC+BC,由此即可得出结论.【详解】∵△ADE由△BDE翻折而成,∴AD=BD.∵AC=5cm,BC=10cm,∴△ACD的周长=AC+CD+AD=AC+BC=15cm.故选C.【考点】本题考查了翻折变换,熟知图形翻折不变性的性质是解答此题的关键.二、填空题1、3cm.【解析】【分析】由已知条件,根据垂直平分线的性质得出AB=BC,可得到∠ABD=∠DBC,再利用角平分线上的点到角两边的距离相等得到答案.【详解】解:过点P作PM⊥AB与点M,∵BD垂直平分线段AC,∴AB=CB,∴∠ABD=∠DBC,即BD为角平分线,∵AE=7cm,AP=4cm,∴AE﹣AP=3cm,又∵PM⊥AB,PE⊥CB,∴PM=PE=3(cm).故答案为:3cm.【考点】本题综合考查了线段垂直平分线的性质及角平分线的性质,线段垂直平分线上的点到线段两端的距离相等,角平分线上的点到角两边的距离相等,灵活应用线段垂直平分线及角平分线的性质是解题的关键.2、3【解析】【分析】根据轴对称的性质以及全等三角形的性质一一判断即可.【详解】解:和是的轴对称图形,,,,,故①正确;,由翻折的性质得,,又,,故②正确;,,,边上的高与边上的高相等,即点到两边的距离相等,平分,故③正确;只有当时,,才有,故④错误;在和中,,,,,,故⑤错误;综上所述,结论正确的是①②③.故答案为:3.【考点】本题考查轴对称的性质,全等三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3、70°【解析】【详解】解:由折叠的性质得到∠BDE=∠B′DE,∵∠ADF=80°,∠ADF+∠BDE+∠B′DE=180°,∴∠BDE=∠B′DE=50°,∵△ABC为等边三角形,∴∠B=60°,则∠BED=180°-(50°+60°)=70°.∴∠DEG=∠BED=70°,故答案为:70°4、H•8379【解析】【分析】易得所求的牌照与看到的牌照关于水平的一条直线成轴对称,作出相应图形即可求解.【详解】解:如图所示:该车牌照号码为:H•8379.故答案为:H•8379.【考点】本题考查轴对称的应用,熟练掌握轴对称的性质是解题关键.5、8【解析】【分析】根据题意,作出合适的辅助线,然后根据全等三角形的判定和性质可以求得DE的长,本题得以解决.【详解】解:作QF⊥AC,交AC的延长线于点F,则∠QFC=90°,∵△ABC是等边三角形,PE⊥AC于点E,∴∠A=∠ACB=60°,∠PEA=90°,∴∠PEA=∠QFC,∵∠ACB=∠QCF,∴∠A=∠QCF,在△PEA和△QFC中,,∴△PEA≌△QFC(AAS),∴AE=CF,PE=QF,∵AC=AE+EC=16,∴EF=CF+EC=16,∵∠PED=90°,∠QFD=90°,∴∠PED=∠QFD,在△PED和△QFD中,,∴△PED≌△QFD(AAS),∴ED=FD,∵ED+FD=EF=16,∴DE=8,故答案为:8.【考点】本题考查了全等三角形的判定与性质、等边三角形的性质,解答本题的关键是明确题意,利用等三角形的判定与性质和数形结合的思想解答.三、解答题1、(1)见解析(2)相等,见解析【解析】【分析】(1)利用角平分线的定义和平行线的性质可得结论;
(2)利用平行线的性质可得,
则AD=
AE,从而有CD
=
BE,由(1)
得,,可知BE
=
DE,等量代换即可.(1)证明:∵是的角平分线,∴.∵,∴,∴.(2).理由如下:∵,∴.∵,∴,∴,∴,∴,即.由(1)得,∴,∴.【考点】本题主要考查了平行线的性质,等腰三角形的判定与性质,角平分线的定义等知识,熟练掌握平行与角平分线可推出等腰三角形是解题的关键.2、(1)证明见解析;(2)=80°【解析】【分析】(1)利用已知条件和等腰三角形的性质证明,根据全等三角形的性质即可证明;(2)根据三角形内角和定理得∠B=50°,所以∠C=50°,在△ABC中利用三角形内角和定理即可求解.【详解】解:(1)证明:∵点D为BC的中点,∴BD=CD,∵,,∴∠DEB=∠DFC=90°在△BDE和△CDF中,∴,∴.(2)∵∴∠B=180°-(∠BDE+∠BED)=50°,∴∠C=50°,在△ABC中,=180°-(∠B+∠C)=80°,故=80°.【考点】本题考查等腰三角形的性质、全等三角形的判定与性质和三角形内角和定理,熟练掌握等腰三角形的性质并灵活应用是解题的关键.3、见解析【解析】【分析】(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得∠ABE=∠A;结合三角形外角的性质可得∠BEC的度数,再在Rt△BCE中结合含30°角的直角三角形的性质,即可证明第(1)问的结论;(2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到∠ABC=60°,至此不难判断△BCD的形状【详解】(1)证明:连结BE,如图.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE.(2)解:△BCD是等边三角形.理由如下:∵DE垂直平分AB,∴D为AB的中点.∵∠ACB=90°,∴CD=BD.又∵∠ABC=60°,∴△BCD是等边三角形.【考点】此题考查了线段垂直平分线的性质、30°角的直角三角形的性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30°角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边的一半是解(2)的关键,4、7cm【解析】【分析】根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.【详解】解:∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.【考点】本题考查了翻折变换的性质,熟记翻折前后两个图形能够完全重合得到相等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省武汉市蔡甸区求新联盟2026届九年级化学第一学期期中质量跟踪监视试题含解析
- 企业转型升级社保补贴及劳动合同优化方案
- 浙江省湖州市德清县校联考2023-2024学年四年级上学期英语期中试卷(含答案)
- 诫子书原文及译文课件
- 湖北省消防安全培训课件
- 安溪自建房消防安全培训课件
- 矿山食堂承包及井下作业人员餐饮服务合同
- 湖北水稻土的分类
- 矿山承包装卸与资源开采合同
- 安保服务礼仪培训课件
- 财务决策实训课件
- 现代信号处理课件
- 第三章平面机构的结构分析
- 狂犬病健康宣教课件
- 20道云南白药销售代表岗位常见面试问题含HR常问问题考察点及参考回答
- 一年级《道德与法治》教材分析
- 基于生态旅游的广西兴业鹿峰山景区旅游开发研究
- 公路隧道病害产生机理及防治对策
- TCSAE 273-2022 轮胎瞬态复合滑移特性通用试验方法
- 我的家乡石阡
- 全国安全生产月安全知识竞赛700题及答案
评论
0/150
提交评论