中考数学总复习《 圆》题库检测试题打印(考试直接用)附答案详解_第1页
中考数学总复习《 圆》题库检测试题打印(考试直接用)附答案详解_第2页
中考数学总复习《 圆》题库检测试题打印(考试直接用)附答案详解_第3页
中考数学总复习《 圆》题库检测试题打印(考试直接用)附答案详解_第4页
中考数学总复习《 圆》题库检测试题打印(考试直接用)附答案详解_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《圆》题库检测试题打印考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,已知长方形中,,圆B的半径为1,圆A与圆B内切,则点与圆A的位置关系是(

)A.点C在圆A外,点D在圆A内 B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内 D.点C在圆A内,点D在圆A外2、一个等腰直角三角形的内切圆与外接圆的半径之比为(

)A. B. C. D.3、下列4个说法中:①直径是弦;②弦是直径;③任何一条直径所在的直线都是圆的对称轴;④弧是半圆;正确的有(

)A.1个 B.2个 C.3个 D.4个4、已知扇形的圆心角为,半径为,则弧长为(

)A. B. C. D.5、已知点在上.则下列命题为真命题的是(

)A.若半径平分弦.则四边形是平行四边形B.若四边形是平行四边形.则C.若.则弦平分半径D.若弦平分半径.则半径平分弦第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、数学课上,老师让学生用尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为小明这种作法中判断∠ACB是直角的依据是_____.2、如图,AB为圆O的切线,点A为切点,OB交圆O于点C,点D在圆O上,连接AD、CD、OA,若∠ADC=25°,则∠B的度数为____.3、如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____4、如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.5、如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为____.三、解答题(5小题,每小题10分,共计50分)1、已知PA,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上一点.(1)如图①,求∠ACB的大小;(2)如图②,AE为⊙O的直径,AE与BC相交于点D.若AB=AD,求∠EAC的大小.2、已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:.3、用反证法证明:一条线段只有一个中点.4、如图,在中,,以为直径作,过点作交于,.求证:是的切线.5、如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.-参考答案-一、单选题1、C【解析】【分析】根据内切得出圆A的半径,再判断点D、点E到圆心的距离即可【详解】∵圆A与圆B内切,,圆B的半径为1∴圆A的半径为5∵<5∴点D在圆A内在Rt△ABC中,∴点C在圆A上故选:C【考点】本题考查点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键2、D【解析】【分析】设等腰直角三角形的直角边是1,则其斜边是.根据直角三角形的内切圆半径是两条直角边的和与斜边的差的一半,得其内切圆半径是;其外接圆半径是斜边的一半,得其外接圆半径是.所以它们的比为=.【详解】解:设等腰直角三角形的直角边是1,则其斜边是;∵内切圆半径是,外接圆半径是,∴所以它们的比为=.故选:D.【考点】本题考查三角形的内切圆与外接圆的知识,解题的关键是熟记直角三角形外接圆的半径和内切圆的半径公式:直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半;直角三角形外接圆的半径是斜边的一半.3、B【解析】【分析】根据弧的分类、圆的性质逐一判断即可.【详解】解:①直径是最长的弦,故正确;②最长的弦才是直径,故错误;③过圆心的任一直线都是圆的对称轴,故正确;④半圆是弧,但弧不一定是半圆,故错误,正确的有两个,故选B.【考点】本题考查了对圆的认识,熟知弦的定义、弧的分类是本题的关键.4、D【解析】【分析】根据扇形的弧长公式计算即可.【详解】∵扇形的圆心角为30°,半径为2cm,∴弧长cm故答案为:D.【考点】本题主要考查扇形的弧长,熟记扇形的弧长公式是解题的关键.5、B【解析】【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.【详解】A.∵半径平分弦,∴OB⊥AC,AB=BC,不能判断四边形OABC是平行四边形,假命题;B.∵四边形是平行四边形,且OA=OC,∴四边形是菱形,∴OA=AB=OB,OA∥BC,∴△OAB是等边三角形,∴∠OAB=60º,∴∠ABC=120º,真命题;C.∵,∴∠AOC=120º,不能判断出弦平分半径,假命题;D.只有当弦垂直平分半径时,半径平分弦,所以是假命题,故选:B.【考点】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假.二、填空题1、直径所对的圆周角是直角【解析】【分析】根据圆周角定理即可得出结论.【详解】解:根据“直径所对的圆周角是直角”得出.故答案为直径所对的圆周角是直角.【考点】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.2、40°【解析】【分析】根据圆周角和圆心角的关系,可以得到∠AOC的度数,然后根据AB为⊙O的切线和直角三角形的两个锐角互余,即可求得∠B的度数.【详解】解:∵∠ADC=25°,∴∠AOC=50°,∵AB为⊙O的切线,点A为切点,∴∠OAB=90°,∴∠B=90°-∠AOC=90°-50°=40°,故答案为:40°.【考点】本题考查切线的性质、圆周角定理、直角三角形的性质,利用数形结合的思想解答问题是解答本题的关键.3、【解析】【分析】连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案为.【考点】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.4、44°【解析】【分析】首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.【详解】连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案为44°【考点】此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.5、【解析】【分析】如图:连接OP、OQ,根据,可得当OP⊥AB时,PQ最短;在中运用含30°的直角三角形的性质和勾股定理求得AB、AQ的长,然后再运用等面积法求得OP的长,最后运用勾股定理解答即可.【详解】解:如图:连接OP、OQ,∵是的一条切线∴PQ⊥OQ∴∴当OP⊥AB时,如图OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案为.【考点】本题考查了切线的性质、含30°直角三角形的性质、勾股定理等知识点,此正确作出辅助线、根据勾股定理确定当PO⊥AB时、线段PQ最短是解答本题的关键.三、解答题1、(1)∠ACB=50°(2)∠EAC=20°【解析】【分析】(1)连接OA、OB,根据切线性质和∠P=80°,得到∠AOB=100°,根据圆周角定理得到∠C=50°;(2)连接CE,证明∠BCE=∠BAE=40°,根据等腰三角形性质得到∠ABD=∠ADB=70°,由三角形外角性质得到∠EAC=20°.(1)连接OA、OB,

∵PA,PB是⊙O的切线,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,由圆周角定理得,∠ACB=∠AOB=50°;(2)连接CE,∵AE为⊙O的直径,∴∠ACE=90°,∵∠ACB=50°,∴∠BCE=90°﹣50°=40°,∴∠BAE=∠BCE=40°,∵AB=AD,∴∠ABD=∠ADB=70°,∴∠EAC=∠ADB﹣∠ACB=20°.【考点】本题考查了圆的切线,圆周角,等腰三角形,三角形外角,熟练掌握圆的切线性质,圆周角定理及推论,等腰三角形的性质,三角形外角性质,是解决问题的关键.2、证明见解析【解析】【分析】根据等边对等角可以证得∠A=∠B,然后根据SAS即可证得两个三角形全等.【详解】证明:∵OA=OB,∴∠A=∠B,∵在△OAC和△OBD中:,∴△OAC≌△OBD(SAS).【考点】本题考查了三角形全等的判定与性质,同圆半径相等.正确理解三角形的判定定理是关键.3、见解析.【解析】【分析】首先假设结论的反面:一条线段可以有多个中点,不妨设有两个,根据中点的定义得出矛盾,即可证得.【详解】解:已知:一条线段,点M为的中点.求证:线段只有一个中点M,证明:假设线段有两个中点,分别为点M、N,不妨设点M在点N的左边,则,又∵,这与矛盾,∴假设不成立,线段只有一个中点M.∴一条线段只有一个中点.【考点】本题主要考查了反证法,正确理解反证法的基本思想是解题的关键.4、证明见解析【解析】【分析】根据平行线及三角形内角和定理可求得,又是的直径,根据切线的定义可得结论【详解】证明:,.,...是的直径,是的切线.【考点】本题考查了圆的切线的证明、平行线及三角形的内角和定理的应用,熟练掌握各知识点并利用数形结合的思想进行合理转化是解决本题的关键5、(1)见解析(2)【解析】【分析】(1)根据勾股定理的逆定理得到∠AEM=90°,由于,根据平行线的性质得∠ABC=90°,然后根据切线的判定定理即可得到BC是⊙O的切线;(2)连接OM,设⊙O的半径是r,在Rt△OEM中,根据勾股定理得到r2=32+(4−r)2,解方程即可得到⊙O的半径,即可得出答案.【详解】(1)证明:∵在△AME中,ME=3,AE=4,AM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论