




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》专项练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,已知,下面甲、乙、丙、丁四个三角形中,与全等的是(
)A.甲 B.乙 C.丙 D.丁2、如图,在中,,,,平分交于D点,E,F分别是,上的动点,则的最小值为(
)A. B. C.3 D.3、如图,在△ABC和△DEF中,AB=DE,ABDE,运用“SAS”判定△ABC≌△DEF,需补充的条件是()A.AC=DF B.∠A=∠D C.BE=CF D.∠ACB=∠DFE4、如图给出了四组三角形,其中全等的三角形有(
)组.A.1 B.2 C.3 D.45、下列选项中表示两个全等图形的是()A.形状相同的两个图形 B.能够完全重合的两个图形C.面积相等的两个图形 D.周长相等的两个图形第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图所示的网格是正方形网格,点A,B,C,D均落在格点上,则∠BAD+∠ADC=_____.2、如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.3、如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.4、如图,已知的周长是22,PB、PC分别平分和,于D,且,的面积是________.5、如图,已知,,添加一个条件,使,你添加的条件是______(填一个即可).三、解答题(5小题,每小题10分,共计50分)1、如图,已知在ΔABC中AB=AC,∠BAC=90°,分别过B,C两点向过A的直线作垂线,垂足分别为E,F.求证:EF=BE+CE.2、如图,已知,,,求证:.3、已知如图,E.F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分.4、如图,等腰三角形中,,.作于点,将线段绕着点顺时针旋转角后得到线段,连接.(1)求证:;(2)延长线段,交线段于点.求的度数(用含有的式子表示).5、如图,已知△ABC.求作:BC边上的高与内角∠B的角平分线的交点.-参考答案-一、单选题1、B【解析】【分析】根据全等三角形的判定定理逐判定即可.【详解】解:A.△ABC和甲所示三角形只有一边一角对应相等,无法判定它们全等,故本选项不符合题意;B.△ABC和乙所示三角形有两边及其夹角对应相等,根据SAS可判定它们全等,故本选项符合题意;C.△ABC和丙所示三角形有两边一角相等,但不是对应的两边一角,无法判定它们全等,故本选项不符合题意;;D.△ABC和丁所示三角形有两角对应相等,有一边相等,但相等边不是两角的夹边,所以两角一边不是对应相等,无法判定它们全等,故本选项不符合题意;;故选:B.2、D【解析】【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度.【详解】在AB上取一点G,使AG=AF.∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即为求CE+EG的最小值,故当C、E、G三点共线时,符合要求,此时,作CH⊥AB于H点,则CH的长即为CE+EG的最小值,此时,,∴CH==,即:CE+EF的最小值为,故选:D.【考点】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键.3、C【解析】【分析】证出∠ABC=∠DEF,由SAS即可得出结论.【详解】解:补充BE=CF,理由如下:∵AB∥DE,∴∠ABC=∠DEF,若要利用SAS判定,B、D选项不符合要求,若A:AC=DF,构成的是SSA,不能证明三角形全等,A选项不符合要求,C选项:BE=CF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故选:C.【考点】此题主要考查全等三角形的判定,解题的关键是熟知“SAS”的判定的特点.4、D【解析】【详解】分析:根据全等三角形的判定解答即可.详解:图A可以利用AAS证明全等,图B可以利用SAS证明全等,图C可以利用SAS证明全等,图D可以利用ASA证明全等..其中全等的三角形有4组,故选D.点睛:此题考查全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较典型,难度适中.5、B【解析】【分析】利用全等图形的定义分析即可.【详解】A、形状相同的两个图形,不一定是全等图形,故此选项错误;B、能够完全重合的两个图形,一定是全等图形,故此选项正确;C、面积相等的两个图形,不一定是全等图形,故此选项错误;D、周长相等的两个图形,不一定是全等图形,故此选项错误;故选B.【考点】此题主要考查了全等图形,正确把握全等图形的定义是解题关键.二、填空题1、或度【解析】【分析】证明△DCE≌△ABD(SAS),得∠CDE=∠DAB,根据同角的余角相等和三角形的内角和可得结论.【详解】解:如图,设AB与CD相交于点F,在△DCE和△ABD中,∵,∴△DCE≌△ABD(SAS),∴∠CDE=∠DAB,∵∠CDE+∠ADC=∠ADC+∠DAB=90°,∴∠AFD=90°,∴∠BAC+∠ACD=90°,故答案为:90度.【考点】本题网格型问题,考查了三角形全等的性质和判定及直角三角形各角的关系,本题构建全等三角形是关键.2、70【解析】【分析】先利用HL证明△ABE≌△CBF,可证∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【详解】∵∠ABC=90°,AB=AC,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为70.【考点】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.3、120【解析】【分析】根基三角形全等的性质得到∠C=∠C′=24°,再根据三角形的内角和定理求出答案.【详解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案为:120.【考点】此题考查三角形全等的性质定理:全等三角形的对应角相等,三角形的内角和定理.4、33【解析】【分析】连接AP,过点P分别作PE⊥AB于点E,PF⊥AC于点F,根据角平分线的性质定理,可得PD=PE=PF=3,再根据三角形的面积等于三个小三角形的面积之和,即可求解.【详解】解:如图,连接AP,过点P分别作PE⊥AB于点E,PF⊥AC于点F,∵PB、PC分别平分和,于D,∴PD=PE,PD=PF,∴PD=PE=PF=3,∵的周长是22,∴的面积是.故答案为:33【考点】本题主要考查了角平分线的性质定理,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.5、(答案不唯一)【解析】【分析】此题是一道开放型的题目,答案不唯一,先根据∠BCE=∠ACD求出∠BCA=∠DCE,再根据全等三角形的判定定理SAS推出即可.【详解】解:添加的条件是CB=CE,理由是:∵∠BCE=∠ACD,∴∠BCE+∠ECA=∠ACD+∠ECA,∴∠BCA=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),故答案为:CB=CE(答案不唯一).【考点】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.三、解答题1、见解析【解析】【分析】证明△BEA≌△AFC,然后利用对应边相等就可以证明题目的结论.【详解】证明:∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA,在△BEA和△AFC中,∴△BEA≌△AFC().∴EA=FC,BE=AF.∴EF=BE+CF.【考点】此题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.2、证明见解析.【解析】【分析】利用SSS可证明△ABD≌△ACE,可得∠BAD=∠1,∠ABD=∠2,根据三角形外角的性质即可得∠3=∠BAD+∠ABD,即可得结论.【详解】在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠1,∠ABD=∠2,∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.【考点】本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键.3、见解析【解析】【分析】根据已知条件易证△ABE≌△DFC,由全等三角形的对应角相等可得∠B=∠D,再利用AAS证明△ABO≌△COD,所以AO=CO,BO=DO,即可证明AC与BD互相平分.【详解】证明:∵BF=DE,∴BF-EF=DE-EF即BE=DF,在△ABE和△DFC中,∴△ABE≌△DFC(SSS),∴∠B=∠D.在△ABO和△CDO中,∴△ABO≌△CDO(AAS),∴AO=CO,BO=DO,即AC与BD互相平分.【考点】本题考查了全等三角形的判定与性质,解题关键是通过证明△ABE≌△DFC得∠B=∠D,为证明△ABO≌△COD提供条件.4、(1)见解析;(2)【解析】【分析】(1)根据“边角边”证,得到即可;(2)由(1)得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解析卷冀教版8年级下册期末试题【研优卷】附答案详解
- 2025年在线教育平台互动教学工具应用与用户满意度分析报告
- 2025年工业互联网平台雾计算协同机制与工业互联网平台数据治理技术标准化报告
- 解析卷人教版(五四制)6年级数学下册期末试题附参考答案详解(模拟题)
- 2025至2030年中国白芷行业市场深度分析及投资策略咨询报告
- 华东师大版7年级下册期末试题及完整答案详解【有一套】
- 会员注册协议需要明确条款
- 国企企业面试题库附答案详解(轻巧夺冠)
- 解析卷-青岛版9年级数学下册期末试题【各地真题】附答案详解
- 考点解析-黑龙江省尚志市中考数学真题分类(丰富的图形世界)汇编专项训练试题
- 基层卫生院服务基层行-3.1.1执业管理
- 2025房屋租赁合同范本(官方版)
- 会务安全考试试题及答案
- 汽车文化课件小学生
- 商务接待培训课件
- 威士忌吧活动方案
- 紧急物料采购协议书范本
- 2025安全生产法解读与实践
- 某学院教育事业发展十五五规划概述
- 工厂产品交付管理制度
- 果蔬项目可行性研究报告模板及范文
评论
0/150
提交评论