版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、如图,在△ABC中,点G为△ABC的重心,过点G作DE∥BC,分别交AB、AC于点D、E,则△ADE与四边形DBCE的面积比为()A. B. C. D.2、已知函数是反比例函数,图象在第一、三象限内,则的值是()A.3 B.-3 C. D.3、已知点都在反比例函数的图象上,且,则下列结论一定正确的是(
)A. B. C. D.4、如图,菱形的顶点在直线上,若,,则的度数为(
)A. B. C. D.5、一元二次方程(m+1)x2-2mx+m2-1=0有两个异号根,则m的取值范围是(
)A.m<1 B.m<1且m≠-1C.m>1 D.-1<m<16、如图,在四边形ABCD中,,且AD=DC,则下列说法:①四边形ABCD是平行四边形;②AB=BC;③AC⊥BD;④AC平分∠BAD;⑤若AC=6,BD=8,则四边形ABCD的面积为24,其中正确的有(
)A.2个 B.3个 C.4个 D.5个二、多选题(6小题,每小题2分,共计12分)1、如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论中正确的是(
)A.S△ADB=S△ADC;B.当0<x<3时,y1<y2;C.如图,当x=3时,EF=;D.当x>0时,y1随x的增大而增大,y2随x的增大而减小.2、手工制作课上,小红利用一些花布的边角料,剪裁后装裱手工画.下面四个图案是她剪裁出的空心不等边三角形.等边三角形.正方形和矩形花边,其中每个图案花边的宽度都相同,那么每个图案中花边的内外边缘所围成的几何图形相似的是(
)A. B.C. D.3、若反比例函数y=的图象在每一个象限内y的值随x的增大而增大,则关于x的函数y=(1+m)x+m2+3的图象经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4、某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则不符合这一结果的实验是(
)A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是45、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论,其中正确的结论是()A.AC=FG B.S△FAB:S四边形CBFG=1:2 C.∠ABC=∠ABF D.AD2=FQ•AC6、如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论,正确的有(
).A. B.C. D.第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大,则此函数的表达式可以为_____.2、写出一个一元二次方程,使它有两个不相等的实数根______.3、已知=,则=________.4、如图,矩形的两边,的长分别为3、8,E是的中点,反比例函数的图象经过点E,与交于点F.若,则反比例函数的表达式为______.5、如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为________.6、如图,在中,,点D是的中点,过点D作,垂足为点E,连接,若,,则________.7、如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,4)也在此函数的图象上,则a=_____.8、如图,边长为4的正方形的对称中心是坐标原点O,轴,轴,反比例函数与的图像均与正方形的边相交,则图中阴影部分的面积之和是________.四、解答题(6小题,每小题10分,共计60分)1、已知关于x的一元二次方程有两个实数根.(1)求k的取值范围;(2)若,求k的值.2、已知:.(1)求代数式的值;(2)如果,求的值.3、已知有三条长度分别为2cm、4cm、8cm的线段,请再添一条线段.使这四条线段成比例,求所添线段的长度.4、在矩形中,于点,点是边上一点.(1)若平分,交于点,PF⊥BD,如图(1),证明四边形是菱形;(2)若,如图(2),求证:.5、如图,在平面直角坐标系中,O为坐标原点,点A坐标为(3,0),四边形OABC为平行四边形,反比例函数y=(x>0)的图象经过点C,与边AB交于点D,若OC=2,tan∠AOC=1.(1)求反比例函数解析式;(2)点P(a,0)是x轴上一动点,求|PC-PD|最大时a的值;(3)连接CA,在反比例函数图象上是否存在点M,平面内是否存在点N,使得四边形CAMN为矩形,若存在,请直接写出点M的坐标;若不存在,请说明理由.6、发现:四个连续的整数的积加上是一个整数的平方.验证:(1)的结果是哪个数的平方?(2)设四个连续的整数分别为,试证明他们的积加上是一个整数的平方;延伸:(3)有三个连续的整数,前两个整数的平方和等于第三个数的平方,试求出这三个整数分别是多少.-参考答案-一、单选题1、A【解析】【分析】连接AG并延长交BC于H,如图,利用三角形重心的性质得到AG=2GH,再证明△ADE∽△ABC,根据相似三角形的性质得到==,然后根据比例的性质得到△ADE与四边形DBCE的面积比.【详解】解:连接AG并延长交BC于H,如图,∵点G为△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE与四边形DBCE的面积比=.故选:A.【考点】本题考查了三角形的重心与相似三角形的性质与判定.重心到顶点的距离与重心到对边中点的距离之比为2∶1.2、A【解析】【分析】根据反比例函数的定义建立关于m的一元二次方程,再根据反比例函数的性质解答.【详解】∵函数是反比例函数,∴m2-10=-1,解得,m2=9,∴m=±3,当m=3时,m-2>0,图象位于一、三象限;当m=-3时,m-2<0,图象位于二、四象限;故选A.【考点】本题考查了反比例函数的定义和性质,对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.3、C【解析】【分析】根据反比例函数的性质,可得答案.【详解】反比例函数中,=-2020<0,图象位于二、四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故选:C.【考点】本题考查了反比例函数的性质,利用反比例函数的性质:k<0时,图象位于二四象限是解题关键.4、B【解析】【分析】由∠MCN=180°,可求出∠BCD的度数,根据菱形的性质可得∠A的度数,再由AB=AD,进而可求出∠ABD的度数.【详解】∵四边形ABCD是菱形,∴∠A=∠BCD,AB=AD.∵∠1=50°,∠2=20°,∴∠BCD=180°-50°-20°=110°∴∠A=110°.∵AB=AD,∴∠ABD=∠ADB=(180°-110°)÷2=35°.故选B.【考点】本题考查了菱形的性质、三角形内角和定理的运用以及等腰三角形的判定和性质,熟记菱形的各种性质是解题的关键.5、B【解析】【分析】设方程两根为x1,x2,根据一元二次方程的定义和根与系数的关系求解即可.【详解】解:设方程两根为x1,x2,根据题意得m+1≠0,,解得m<1且m≠-1,∵x1•x2<0,∴Δ>0,∴m的取值范围为m<1且m≠-1.故选:B.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程根与系数的关系.6、D【解析】【分析】由,可知四边形ABCD是平行四边形,可判断①的正误;由AD=DC,可知平行四边形ABCD是菱形,根据菱形的性质可判断②③④⑤的正误.【详解】解:∵,∴四边形ABCD是平行四边形,故①正确;∵AD=DC,∴平行四边形ABCD是菱形,∴AB=BC,AC⊥BD,AC平分∠BAD,故②③④正确;∵AC=6,BD=8,∴菱形ABCD的面积=,故⑤正确;∴正确的个数有5个,故选D.【考点】本题考查了平行四边形的判定,菱形的判定与性质.解题的关键在于证明四边形ABCD是菱形.二、多选题1、ACD【解析】【分析】对于直线解析式,分别令x与y为0求出y与x的值,确定出A与B坐标,利用AAS得到三角形OBA与三角形CDA全等,利用全等三角形对应边相等得到,确定出C坐标,代入反比例解析式求出k的值,确定出反比例解析式,由图象判断时x的范围,以及与的增减性,把分别代入直线与反比例解析式,相减求出EF的长,即可做出判断.【详解】解:对于直线,令,得到;令,得到,,,即,,在和中,,,,(同底等高三角形面积相等),选项A正确;,把C点坐标代入反比例解析式得:,即,由函数图象得:当时,,选项B错误;当时,,,即,选项C正确;当时,随x的增大而增大,随x的增大而减小,选项D正确.故选:ACD.【考点】此题考查了反比例函数与一次函数的交点,涉及的知识有:一次函数与坐标系的交点,待定系数法确定反比例函数解析式,坐标与图形性质以及反比例函数的性质,熟练掌握函数的性质是解本题的关键.2、ABC【解析】【分析】根据相似图形的定义,结合图形,对选项一一分析,排除不符合要求答案.【详解】解:A、形状相同,符合相似形的定义,对应角相等,所以三角形相似,故该选项符合题意;B、形状相同,符合相似形的定义,故该选项符合题意;C、形状相同,符合相似形的定义,故该选项符合题意;D、两个矩形,虽然四个角对应相等,但对应边不成比例,故该选项不符合题意;故选:ABC.【考点】本题考查的是相似形的概念,联系图形,即形状相同,大小不一定相同的图形叫做相似形.全等形是相似形的一个特例.3、ABD【解析】【分析】先根据反比例函数y=的图象在每一个象限内,y随x的增大而增大可得出关于m的不等式,求出m的取值范围,然后推知函数y=(1+m)x+m2+3的图象所经过的象限.【详解】反比例函数y=的图象在每一个象限内y的值随x值的增大而增大,m+2<0,m<-2,1+m<-1,m2+3>7,函数y=(1+m)x+m2+3的图象经过第一、二、四象限,故选:ABD.【考点】本题考查了反比例函数的性质,一次函数的性质,反比例函数的图象,熟悉函数图象与系数的关系是解题的关键.4、ABC【解析】【分析】根据统计图可知,实验结果在附近波动,即其概率,计算四个选项的概率,约为者符合实验结果.【详解】解:A、在“石头、剪刀、布”的游戏中,小明随机出“剪刀”的概率为,故不符合实验结果,符合题意;B、一副去掉大、小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为;故不符合实验结果,符合题意;C、暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故不符合实验结果,符合题意;D、掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为:故符合实验结果,不符合题意;故选:ABC.【考点】本题考查了利用频率估算概率以及概率公式的简单应用,大量反复试验下频率稳定值即为概率,用到的知识点为:频率=所求情况数与总情况数之比.5、ABCD【解析】【分析】根据正方形的性质及垂直的定义证明△CAD≌△GFA,即可判断A选项;证明四边形CBFG是矩形,由此判断B选项;根据矩形的性质及等腰直角三角形的性质即可判断C选项;证明△CAD∽△EFQ,即可判断D选项.【详解】解:∵四边形ADEF为正方形,∴,∴,∵FG⊥CA,∴,∴,∴,∴△CAD≌△GFA,∴AC=FG,故A选项正确;∵,∴GF∥BC,∵CB=CA,CA=GF,∴GF=BC,∴四边形CBFG是平行四边形,∵,∴四边形CBFG是矩形,∴S△FAB:S四边形CBFG=1:2,故B选项正确;∵四边形CBFG是矩形,∴,∵CB=CA,∠ACB=90°,∴,∴,故C选项正确;∵四边形ADEF为正方形,∴,AD=EF,∴,∵四边形CBFG是矩形,∴,∴,∴,∵,∴,∵,∴△CAD∽△EFQ,∴,∵AD=EF,∴AD2=FQ•AC,故D选项正确;故选:ABCD.【考点】此题考查矩形的判定及性质,等腰直角三角形的性质,正方形的性质,全等三角形的判定及性质,相似三角形的判定及性质,熟记各知识点并熟练应用解决问题是解题的关键.6、AC【解析】【分析】由中线BE和中线CD得DE是△ABC的中位线,由中位线的性质判断A,B;由中位线得证△DOE∽△COB,从而判断C;求得△ODE与△ABC的面积关系,由中线CD得△ADC和△ABC的面积关系,从而判断D.【详解】解:∵BE和CD是△ABC的中线,∴DE是△ABC的中位线,点O是△ABC的重心,∴DE:BC=1:2,故选项A正确,符合题意;AD:AB=1:2,DE∥BC,∴∠OED=∠OBC,∠ODE=∠OCB,∴△OED∽△OBC,∴,故选项B错误,不符合题意;∴OE:OB=ED:BC=1:2,∴AD:AB=OE:OB,故选项C正确,符合题意;∵CD是△ABC的中线,∴,∵OE:OB=OD:OC=1:2∴OC:DC=2:3∴,∴∴,故选项D错误,不符合题意;故答案为:A、C.【考点】此题考查了中位线的性质,涉及了比例线段和相似三角形的性质,熟练掌握相关基本性质是解题的关键.三、填空题1、答案不唯一,如【解析】【分析】依题意反比例函数中k0,即可写出一个.【详解】∵当时,随的增大而增大,∴反比例函数中k0,故可写出若干,如.【考点】此题主要考察反比例函数的图像2、x2+x﹣1=0(答案不唯一)【解析】【分析】这是一道开放自主题,只要写出的方程的Δ>0就可以了.【详解】解:比如a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=1+4=5>0,∴方程为x2+x﹣1=0.故答案为:x2+x﹣1=0(答案不唯一)【考点】本题考查了一元二次方程根的判别式,掌握“根的判别式大于0,方程有两个不相等的实数根”是解题的关键.3、【解析】【分析】利用比例的性质进行变形,然后代入代数式中合并约分即可.【详解】解:∵,∴,则.故答案为:.【考点】本题考查比例问题,关键掌握比例的性质,会利用性质把比例式进行恒等变形,会根据需要选择灵活的比例式解决问题.4、【解析】【分析】利用勾股定理计算出,则,设,则,,,利用反比例函数图象上点的坐标特征得到,解得,所以,即可求出的值,从而得到反比例函数的表达式.【详解】解:如图连接AE,∵矩形的两边,的长分别为3、8,E是的中点,,,,设,则,是的中点,,,,在反比例函数的图象上,,解得,,,反比例函数的表达式是.故答案为.【考点】本题考查了待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特征、矩形的性质、勾股定理的应用,表示出点的坐标是解题的关键.5、【解析】【详解】解:如图所示,连接EG,由旋转可知△ABF≌△ADE,∴DE=BF,AE=AF,∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5-x=BF,FG=EG=BF+BG=8-x,∵∠C=90°,∴CE2+CG2=EG2即x2+22=(8−x)2解得x=,∴CE的长为,故答案为:.【考点】本题主要考查了正方形的性质以及旋转的性质,解决该题的关键是根据勾股定理列方程.6、3【解析】【分析】根据直角三角形的性质得到AB=10,利用勾股定理求出AC,再说明DE∥AC,得到,即可求出DE.【详解】解:∵∠ACB=90°,点D为AB中点,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案为:3.【考点】本题考查了直角三角形的性质,勾股定理,平行线分线段成比例,解题的关键是通过平行得到比例式.7、3【解析】【分析】根据反比例函数的几何意义,可得,从而得到,再将点P(a,4)代入解析式,即可求解.【详解】解:∵点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,∴,∵△OAB的面积为6.∴,即,∴反比例函数的解析式为,∵点P(a,4)也在此函数的图象上,∴,解得:.故答案为:3【考点】本题主要考查了反比例函数的几何意义,反比例函数的图象和性质,熟练掌握反比例函数的几何意义,反比例函数的图象和性质,利用数形结合思想解答是解题的关键.8、8【解析】【分析】根据题意,观察图形可得图中的阴影部分的面积是图中正方形面积的一半,且AB∥x轴,BC∥y轴,而正方形面积为16,由此可以求出阴影部分的面积.【详解】解:根据题意:观察图形可得,图中以B、D为顶点的小阴影部分,绕点O顺时针旋转90°,正好和以A、C为顶点的小空白部分重合,所以阴影的面积是图中正方形面积的一半,且AB∥x轴,BC∥y轴,反比例函数与的图象均与正方形ABCD的边相交,而边长为4的正方形面积为16,所以图中的阴影部分的面积是8.故答案为:8.【考点】本题主要考查反比例函数图象和性质的应用,关键是要分析出其图象特点,再结合性质作答.四、解答题1、(1);(2)【解析】【分析】(1)根据建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可.【详解】解:(1)由题意可知,,整理得:,解得:,∴的取值范围是:.故答案为:.(2)由题意得:,由韦达定理可知:,,故有:,整理得:,解得:,又由(1)中可知,∴的值为.故答案为:.【考点】本题考查了一元二次方程判别式、根与系数的关系、韦达定理、一元二次方程的解法等知识点,当>0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当<0时,方程没有实数根.2、(1)1;(2)【解析】【分析】(1)设a=2k,b=3k,c=5k,代入代数式,即可求出答案;(2)把a、b、c的值代入,求出即可.【详解】∵∴设a=2k,b=3k,c=5k,(1);(2)∵∴6k-3k+5k=24,∴k=3,∴a=2×3=6,b=3×3=9,c=5×3=15.【考点】本题考查了比例的性质的应用,主要考查学生的计算能力.3、1或4或16.【解析】【分析】根据成比例线段的性质求解即可.【详解】解:设添加的线段长度为x,当时,解得:;当时,解得:;当时,解得:.∴所添线段的长度为1或4或16.【考点】此题考查了线段成比例,解题的关键是熟练掌握线段成比例性质并分类讨论.4、(1)见解析;(2)见解析【解析】【分析】(1)想办法证明AG=PF,AG∥PF,推出四边形AGFP是平行四边形,再证明PA=PF即可解决问题.(2)证明△AEP∽△DEC,可得,由此即可解决问题.【详解】解:(1)∵平分,,,∴,,又∵在中,,在中,∴,又∵,∴,∴,∴,∵,,∴AG∥PF,∴四边形是平行四边形,∴四边形AGFP是菱形;(2)∵,,∴,,∴,又∵,,∴,∴,∴,∴,又∵,∴.【考点】本题主要考查了角平分线的性质,菱形的判定,相似三角形的性质与判定,矩形的性质,解题的关键在于能够熟练掌握相关知识进行求解.5、(1)(2)|PC−PD|最大时a的值为6(3)存在,点M的坐标为(,)【解析】【分析】(1)先确定出OE=CE=2,即可得出点C坐标,最后用待定系数法即可得出结论;(2)先求出OC解析式,由平行四边形的性质可得BC=OA=3,BC∥OA,AB∥OC,利用待定系数法可求AB解析式,求出点D的坐标,再根据三角形关系可得出当点P,C,D三点共线时,|PC-PD|最大,求出直线CD的解析式,令y=0即可求解;(3)若四边形CAMN为矩形,则△CAM是直角三角形且AC为一条直角边,根据直角顶点需要分两种情况,画出图形分别求解即可.(1)解:如图1,过点C作CE⊥x轴于E,∴∠CEO=90°,∵tan∠AOC=1,∴∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴k=2×2=4,∴反比例函数解析式为y=;(2)解:∵点C(2,2),点O(0,0),∴OC解析式为:y=x,∵四边形OABC是平行四边形,点A坐标为(3,0),∴BC=OA=3,BC∥OA,AB∥OC,∴点B(5,2),∴设AB解析式为:y=x+b,∴2=5+b,∴b=-3,∴AB解析式为:y=x-3,联立方程组可得:,∴或(舍去),∴点D(4,1);在△PCD中,|PC-PD|<CD,则当点P,C,D三点共线时,|PC-PD|=CD,此时,|PC-PD|取得最大值,由(1)知C(2,2),D(4,1),设直线CD的解析式为:y=mx+n,∴,解得,∴直线CD的解析式为:y=x+3,令y=0,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电工焊工考试题目及答案
- 2025年长沙初中阅读真题及答案
- 2025年幼儿园教师招聘考试试题库及答案
- 2025年飞行员执照考试《仪表等级(直升机)》模拟题及答案二
- 2025年防雷检测考试题目及答案
- 2025年飞行员执照考试《商用驾驶员直升机》复习题及答案三
- 2025新车买卖合同模板新版
- 2025年内科自考本科真题及答案
- 深度探索文学
- 微塑料的科普知识
- 2025-2030年中国PETG塑料行业市场现状供需分析及投资评估规划分析研究报告
- 蜜雪冰城加盟协议合同
- TSG Z7002-2022特种设备检测机构核准规则
- 设备试验合作协议书范本
- 智能宠物喂食系统研究-全面剖析
- 房地产经纪人专业基础考试真题及答案(2025年新版)
- 洗护系列产品培训
- 2025年公路水运工程试验检测师(桥梁隧道工程)真题和答案
- 2025年安徽淮北阳光电力服务有限责任公司招聘笔试参考题库含答案解析
- 2025-2030中国油田聚丙烯酰胺行业市场发展趋势与前景展望战略研究报告
- 2025年国家公务员考试行测逻辑判断100题及答案
评论
0/150
提交评论