苏教七年级下册期末数学重点中学试题A卷_第1页
苏教七年级下册期末数学重点中学试题A卷_第2页
苏教七年级下册期末数学重点中学试题A卷_第3页
苏教七年级下册期末数学重点中学试题A卷_第4页
苏教七年级下册期末数学重点中学试题A卷_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

苏教七年级下册期末数学重点中学试题A卷一、选择题1.a6÷a3的计算结果是()A.a9 B.a18 C.a3 D.a22.如图,∠1和∠2是同位角的是()A. B. C. D.3.已知是方程的解,那么关于的不等式解集是()A. B. C. D.4.若,则下列式子错误的是()A. B. C. D.5.若关于x的不等式,所有整数解的和是15,则a的取值范围是()A. B. C. D.6.在下列命题中:①同旁内角互补;②两点确定一条直线;③两条直线相交,有且只有一个交点;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等.其中属于真命题的有()A.1个 B.2个 C.3个 D.4个7.观察下列按一定规律排列的n个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n等于()A.500 B.501 C.1000 D.10028.如图,小明从一张三角形纸片ABC的AC边上选取一点N,将纸片沿着BN对折一次使得点A落在A′处后,再将纸片沿着BA′对折一次,使得点C落在BN上的C′处,已知∠CMB=68°,∠A=18°,则原三角形的∠C的度数为()A.87° B.84° C.75° D.72°二、填空题9.计算:=_______.10.命题“互补的两个角不能都是锐角”是__________命题(填“真”或“假”).11.在同一平面内,正六边形和正方形如图所示放置,则等于____度.12.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是_____(写出一个即可).13.若满足方程组的解与互为相反数,则的值为__________.14.如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则道路的面积为_____.15.已知三角形的三边分别为2,a﹣1,4,那么a的取值范围是_____.16.如图,点D,E,F,G分别是BC,AD,BE,CE的中点,若三角形内有一点,则点落在内(包括边界)的概率为________.17.计算:(1)(2)(3)18.因式分解:(1);(2).19.用指定的方法解方程组.(1)用代入法解:(2)用加减法解:20.解不等式组:,把它的解集在数轴上表示出来并写出它的负整数解.三、解答题21.完成以下推理过程:如图,已知,∠C=∠F,求证:.证明:(已知)()()又(已知)()()().22.某市启动“城市公园”建设,计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成,已知甲工程队完成绿化360m2的面积与乙工程队完成绿化240m2的面积所用时间相同,若甲工程队每天比乙工程队多完成绿化30m2,(1)求甲、乙两工程队每天各能完成多少面积的绿化?(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用是0.5万元,要使这次绿化的总费用不超过45万元,则至少应安排乙工程队绿化多少天?23.规定:二元一次方程有无数组解,每组解记为,称为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题:(1)已知,则是隐线的亮点的是;(2)设是隐线的两个亮点,求方程中的最小的正整数解;(3)已知是实数,且,若是隐线的一个亮点,求隐线中的最大值和最小值的和.24.如图,平分,平分,请判断与的位置关系并说明理由;如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由.如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,①当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由.②当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由.25.已如在四边形中,.(1)如图1,若,则________.(2)如图2,若、分别平分、,判断与位置关系并证明理由.(3)如图3,若、分别五等分、(即,),则_______.【参考答案】一、选择题1.C解析:C【分析】同底数幂相除,底数不变,指数相减,据此计算即可.【详解】解:a6÷a3=a6-3=a3.故选:C.【点睛】本题考查了同底数幂的除法,掌握幂的运算法则是解答本题的关键.2.A解析:A【分析】根据同位角的定义,逐一判断选项,即可.【详解】解:A.∠1和∠2是同位角,故该选项符合题意;B.∠1和∠2不是同位角,故该选项不符合题意;C.∠1和∠2不是同位角,故该选项不符合题意;D.∠1和∠2不是同位角,故该选项不符合题意,故选A.【点睛】本题主要考查同位角的定义,掌握“两条直角被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.3.B解析:B【分析】把x=2代入方程求出a的值,再将a的值代入不等式求出解集即可.【详解】解:把x=2代入方程得:-3=2-1,解得:a=10,把a=10代入不等式得:-3x<4,解得:.故选:B.【点睛】此题考查了解一元一次不等式,以及一元一次方程的解,熟练掌握不等式的解法是解本题的关键.4.B解析:B【分析】根据不等式的性质对各个选项逐一判断,选出错误一项即可.【详解】A、,根据不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,,正确,不符合题意;B、,根据不等式的基本性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,故,错误,符合题意;C、,根据不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,,正确,不符合题意;D、,根据不等式的基本性质:不等式两边乘(或除以)同一个数,不等号的方向不改变,故,正确,不符合题意;故选:B.【点睛】本题考查了不等式的性质,熟记不等式的性质是解决本题的关键,(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.A解析:A【详解】解析:本题考查的是不等式组的整数解的个数.首先求出不等式组的解集是,由于所有整数解的和是15,可得整数解是1、2、3、4、5,所以a的取值范围是;故答案为A.6.B解析:B【分析】根据有关性质与定理,正确的命题叫真命题,错误的命题叫做假命题,分别对每一项进行判断即可.【详解】①两直线平行,同旁内角互补,是假命题;②两点确定一条直线;是真命题;③两条直线相交,有且只有一个交点,是真命题;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等或互补,是假命题.其中属于真命题的有2个.故选B.【点睛】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.7.B解析:B【分析】根据题意列出方程求出最后一个数,除去一半即为n的值.【详解】根据题意可得第n个数为2n,则后三个数分别为2n﹣4,2n﹣2,2n,∴2n﹣4+2n﹣2+2n=3000,解得n=501.故选:B.【点睛】本题考查找规律的题型,关键在于列出方程简化步骤.8.A解析:A【分析】根据折叠的性质可知,根据三角形内角和定理可得,进而可得原三角形的∠C的度数.【详解】由折叠的性质可知,则,,∠CMB=68°,∠A=18°,即解得故选A【点睛】本题考查了折叠的性质,三角形内角和定理,二元一次方程组的应用,掌握折叠的性质是解题的关键.二、填空题9.【解析】原式.10.真【解析】【分析】利用互补的定义和锐角的定义进行判断后即可得到正确的答案.【详解】解:根据锐角和互补的定义得出,互补的两个角不能都是锐角,此命题是真命题,故答案为:真.【点睛】本题考查了命题与定理的知识,解题的关键是了解互补的定义及锐角的定义,难度不大.11.150【分析】求出正六边形和正方形的内角的度数,这两个角的度数与的和是,即可求得答案;【详解】正六边形的内角是:,正方形的角是,则.故答案为:150.【点睛】本题主要考查了多边形的内角与外角,准确计算是解题的关键.12.104020【分析】9x3-xy2=x(9x2-y2)=x(3x+y)(3x-y),当x=10,y=10时,密码可以是10、40、20的任意组合即可.【详解】9x3-xy2=x(9x2-y2)=x(3x+y)(3x-y),当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一.【点睛】本题考查的是因式分解,分解后,将变量赋值,按照因式组合即可.13.-11【分析】由题意根据x与y互为相反数,得到y=-x,代入方程组求出k的值即可.【详解】解:由题意得:y=-x,代入方程组得:,消去x得:,解得:k=-11故答案为:-11.【点睛】本题考查二元一次方程组的解,注意掌握方程组的解即为能使方程组中两方程都成立的未知数的值.14.56米2.【分析】将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可得到草地的面积,进而得出道路的面积.【详解】将道路分别向左、向上平移,得到草地为一个长方形,长方形的长为20﹣2=18(米),宽为10﹣2=8(米),则草地面积为18×8=144米2.∴道路的面积为20×10﹣144=56米2故答案为56米2.【点睛】本题考查了平移在生活中的运用,将道路分别向左、向上平移,得到草地为一个长方形是解题的关键.15.3<a<7.【分析】根据构成三角形三条边的条件:两边之和大于第三边,且两边之差小于第三边,据此解题.【详解】解:依题意得:4﹣2<a﹣1<4+2,即:2<a﹣1<6,∴3<a<7.故答解析:3<a<7.【分析】根据构成三角形三条边的条件:两边之和大于第三边,且两边之差小于第三边,据此解题.【详解】解:依题意得:4﹣2<a﹣1<4+2,即:2<a﹣1<6,∴3<a<7.故答案为:3<a<7.【点睛】本题考查构成三角形三边的条件、不等式的解法等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.【分析】先利用三角形中线性质得出面积之间的关系,然后根据几何概率的计算方法求解.【详解】∵D、E、F、G分别是BC、AD、BE、CE的中点,∴是的中线,是的中线,是的中线,是的中线,是的解析:【分析】先利用三角形中线性质得出面积之间的关系,然后根据几何概率的计算方法求解.【详解】∵D、E、F、G分别是BC、AD、BE、CE的中点,∴是的中线,是的中线,是的中线,是的中线,是的中线,∴的面积的面积的面积的面积,同理可得的面积,的面积,连接同理可得:的面积的面积的面积,∴的面积是,∴.【点睛】本题考查了三角形的中线的含义,几何概率,关键是根据概率=相应的面积与总面积之比解答.17.(1)-9;(2);(3)【分析】(1)分别利用零指数幂,乘方和负指数幂计算,再作加减法;(2)利用幂的乘方先计算,再计算同底数幂的乘除法,最后合并;(3)利用多项式乘多项式和完全平方公式法解析:(1)-9;(2);(3)【分析】(1)分别利用零指数幂,乘方和负指数幂计算,再作加减法;(2)利用幂的乘方先计算,再计算同底数幂的乘除法,最后合并;(3)利用多项式乘多项式和完全平方公式法则展开,再合并同类项.【详解】解:(1)==-9;(2)===;(3)==【点睛】本题考查了实数的混合运算,整式的混合运算,解题的关键是掌握各自的运算法则.18.(1);(2).【分析】(1)先提公因式a,然后再利用平方差公式分解即可;(2)先提公因式-3a,然后再利用完全平方公式进行分解即可.【详解】解:(1)===;(2)==.【解析:(1);(2).【分析】(1)先提公因式a,然后再利用平方差公式分解即可;(2)先提公因式-3a,然后再利用完全平方公式进行分解即可.【详解】解:(1)===;(2)==.【点睛】本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握并灵活运用提公因式法和公式法.19.(1);(2)【分析】(1)将方程①代入②,可求出,然后将代入①即可求解;(2)先将②×2-①可求出,然后将代入②即可求解.【详解】解:将方程①代入②,得:,解得:,将代入解析:(1);(2)【分析】(1)将方程①代入②,可求出,然后将代入①即可求解;(2)先将②×2-①可求出,然后将代入②即可求解.【详解】解:将方程①代入②,得:,解得:,将代入①,得:,∴原方程组的解为;(2)②×2-①,得:,解得:,将代入②,得:,解得:,∴原方程组的解为.【点睛】本题主要考查了解二元一次方程组,熟练掌握二元一次方程组的解法——加减消元法、代入消元法是解题的关键.20.﹣2<x≤3,图见解析,负整数解为-1.【分析】先分别求出两个不等式的解集,然后在数轴上表示出来,即可求解.【详解】解:,由①得:x>﹣2,由②得:x≤3,∴不等式组的解集为﹣2<x≤解析:﹣2<x≤3,图见解析,负整数解为-1.【分析】先分别求出两个不等式的解集,然后在数轴上表示出来,即可求解.【详解】解:,由①得:x>﹣2,由②得:x≤3,∴不等式组的解集为﹣2<x≤3.把解集在数轴上表示:∴不等式组的负整数解为﹣1.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组的基本步骤是解题的关键.三、解答题21.;同位角相等,两直线平行;;两直线平行,同位角相等;;等量代换;;同位角相等,两直线平行;两直线平行,同位角相等【分析】根据平行线的判定得出AC∥DF,根据平行线的性质求出∠C=∠DGB,求出B解析:;同位角相等,两直线平行;;两直线平行,同位角相等;;等量代换;;同位角相等,两直线平行;两直线平行,同位角相等【分析】根据平行线的判定得出AC∥DF,根据平行线的性质求出∠C=∠DGB,求出BC∥EF即可.【详解】证明:(已知)同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(等量代换)同位角相等,两直线平行)两直线平行,同位角相等)【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.22.(1)甲工程队每天能完成90m2,乙工程队每天能完成60m2;(2)10天【分析】(1)设乙工程队每天完成绿化面积,则甲工程队每天完成绿化面积为,由“甲工程队完成绿化的面积与乙工程队完成绿化的面解析:(1)甲工程队每天能完成90m2,乙工程队每天能完成60m2;(2)10天【分析】(1)设乙工程队每天完成绿化面积,则甲工程队每天完成绿化面积为,由“甲工程队完成绿化的面积与乙工程队完成绿化的面积所用时间相同”列出方程可求解;(2)设应安排乙工程队绿化天,由“要使这次绿化的总费用不超过45万元”列出方程,可求解.【详解】解:(1)设乙工程队每天能完成的绿化,由题意得.解得.经检验是原方程的解且满足题意..答:甲工程队每天能完成,乙工程队每天能完成;(2)设应安排乙工程队绿化天,由题意,得.解得.应至少安排乙工程队绿化10天.【点睛】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.23.(1)B;(2)的最小整数解为;(3)隐线中的最大值和最小值的和为【分析】(1)将A,B,C三点坐标代入方程,方程成立的点即为所求,(2)将P,Q代入方程,组成方程组求解即可,(3)将P代入解析:(1)B;(2)的最小整数解为;(3)隐线中的最大值和最小值的和为【分析】(1)将A,B,C三点坐标代入方程,方程成立的点即为所求,(2)将P,Q代入方程,组成方程组求解即可,(3)将P代入隐线方程,与组成方程组,求解方程组的解,再由即可求解.【详解】解:(1)将A,B,C三点坐标代入方程,只有B点符合,∴隐线的亮点的是B.(2)将代入隐线方程得:解得代入方程得:的最小整数解为(3)由题意可得的最大值为,最小值为隐线中的最大值和最小值的和为【点睛】本题考查了二元一次方程的新定义,二元一次方程与直线的关系,运用了数形结合的思想,理解题意是解题关键.24.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.【详解】试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论;(2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;(3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.试题解析:证明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+∠MCD=90°.证明如下:过E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如图3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论