中考数学总复习《旋转》能力提升B卷题库附答案详解【培优】_第1页
中考数学总复习《旋转》能力提升B卷题库附答案详解【培优】_第2页
中考数学总复习《旋转》能力提升B卷题库附答案详解【培优】_第3页
中考数学总复习《旋转》能力提升B卷题库附答案详解【培优】_第4页
中考数学总复习《旋转》能力提升B卷题库附答案详解【培优】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《旋转》能力提升B卷题库考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、观察下列图案,能通过左图顺时针旋转90°得到的()A. B. C. D.2、如图,在正方形ABCD中,将边BC绕点B逆时针旋转至,连接,,若,,则线段BC的长度为().A.4 B.5 C. D.3、下列运动形式属于旋转的是(

)A.在空中上升的氢气球 B.飞驰的火车C.时钟上钟摆的摆动 D.运动员掷出的标枪4、如图,矩形ABCD绕点A逆时针旋转α(0°<α<90°)得到矩形AB'C′D',此时点B′恰好在DC边上,若∠B'BC=15°,则α的大小为()A.15° B.25° C.30° D.45°5、如图,将正方形绕点A顺时针旋转,得到正方形,的延长线交于点H,则的大小为(

)A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为________cm.2、如图,将线段AB绕点O顺时针旋转90°得到线段,那么的对应点的坐标是__________.3、如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,连接CC′.若AB∥CC′,则旋转角的度数为_____°.4、如图,△ABC中,AB=6,DE∥AC,将△BDE绕点B顺时针旋转得到△BD′E′,点D的对应点D′落在边BC上.已知BE′=5,D′C=4,则BC的长为______.5、下列4种图案中,是中心对称图形的有_____个.三、解答题(5小题,每小题10分,共计50分)1、如图1,等腰中,,点,分别在边,上,,连接,点,,分别为,,的中点.(1)观察猜想:图1中,线段与的数量关系是______,位置关系是______.(2)探究证明:把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;(3)拓展延伸:把绕点在平面内自由旋转,若,,请直接写出面积的最大值.2、为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,BE,直接写出NG与BE的数量关系;(2)如图2,将绕点A逆时针旋转,旋转角为,M为线段EF的中点,连接DN,MN.当时,猜想∠DNM的大小是否为定值,如果是定值,请写出∠DNM的度数并证明,如果不是,请说明理由;(3)连接BN,在绕点A逆时针旋转过程中,请直接写出线段BN的最大值.3、如图,在中,,点D、E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转后得CF,连接EF.(1)补充完成图形;(2)若,求证:.4、如图,等腰中,,点P为射线BC上一动点(不与点B、C重合),以点P为中心,将线段PC逆时针旋转角,得到线段PQ,连接、M为线段BQ的中点.(1)若点P在线段BC上,且M恰好也为AP的中点,①依题意在图1中补全图形:②求出此时的值和的值;(2)写出一个的值,使得对于任意线段BC延长线上的点P,总有的值为定值,并证明;5、如图,点是的边上的动点,,连接,并将线段绕点逆时针旋转得到线段.(1)如图1,作,垂足在线段上,当时,判断点是否在直线上,并说明理由;(2)如图2,若,,求以、为邻边的正方形的面积.-参考答案-一、单选题1、A【解析】【分析】根据旋转的定义,观察图形即可解答.【详解】根据旋转的定义,图片按顺时针方向旋转90度,大拇指指向右边,其余4个手指指向下边,从而可确定为A图.故选A.【考点】本题主要考查了旋转的性质,熟知性质是解题的关键.2、D【解析】【分析】根据旋转的性质,可知BC=BC'.取点O为线段CC'的中点,并连接BO.根据等腰三角形三线合一的性质、正方形的性质及直角三角形的性质,可证得Rt△OBC≌Rt△C'CD,从而证得OC=C'D,BO=CC',再利用勾股定理即可求解.【详解】解:如图,取点O为线段CC'的中点,并连接BO.依题意得,BC=BC'∴BO⊥CC'∴∠BOC=90°在正方形ABCD中,BC=CD,∠BCD=90°∴∠OCB+∠C'CD=90°又∵∠CC'D=90°∴∠C'DC+∠C'CD=90°∴∠OCB=∠C'DC在Rt△OBC和Rt△C'CD中∴Rt△OBC≌Rt△C'CD(AAS)∴OC=C'D=2∴CC'=2OC=2×2=4∴BO=CC'=4在Rt△BOC中BC===故选:D.【考点】本题考查了旋转的性质、正方形的性质、等腰三角形的性质、直角三角形的性质、全等三角形的判定和性质及勾股定理的运用等知识,解题的关键是辅助线的添加.3、C【解析】【分析】根据旋转的定义逐一进行判断即可得到正确的结论.【详解】解:在空气中上升的氢气球,飞驰的火车,运动员掷出标枪属于平移现象,时钟上钟摆的摆动属于旋转现象.故选:C.【考点】本题主要考查关于旋转的知识,题目比较简单,属于基础题目,大部分学生能够正确完成,熟练掌握旋转的定义是解决本题的关键.4、C【解析】【分析】由矩形的性质,可知∠ABC=90°,再由旋转,可知△ABB’为等腰三角形,根据内角和求解即可.【详解】解:连接BB′.∵四边形ABCD是矩形,∴∠ABC=90°,∵∠CBB′=15°,∴∠ABB′=90°-15°=75°,∵AB=AB′,∴∠ABB′=∠AB′B=75°,∴∠BAB′=180°-2×75°=30°,∴α=30°,故选:C.【考点】本题考查旋转的性质,矩形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题.5、B【解析】【分析】根据旋转的性质,求得∠BAE=38°,根据正方形的性质,求得∠DBA=45°,∠ABH=135°,利用四边形的内角和定理计算即可.【详解】根据旋转的性质,得∠BAE=38°,∵四边形ABCD是正方形,∴∠DBA=45°,∠ABH=135°,∵四边形AEFG是正方形,∴∠E=90°,∴∠DHE=360°-90°-38°-135°=97°,故选B.【考点】本题考查了旋转的性质,正方形的性质,四边形的内角和定理,熟练掌握正方形的性质,旋转的性质是解题的关键.二、填空题1、【解析】【分析】过点A作AH⊥DE,垂足为H,由旋转的性质可得AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,再根据等腰直角三角形的性质可得∠HAE=45°,AH=3,进而得∠HAF=30°,继而求出AF长即可求得答案.【详解】过点A作AH⊥DE,垂足为H,∵∠BAC=90°,AB=AC,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,∴AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,∴DE=,∠HAE=∠DAE=45°,∴AH=DE=3,∠HAF=∠HAE-∠CAE=30°,∴AF=,∴CF=AC-AF=,故答案为.【考点】本题考查了旋转的性质,等腰直角三角形的性质,勾股定理,解直角三角形等知识,正确添加辅助线构建直角三角形、灵活运用相关知识是解题的关键.2、【解析】【分析】过点A作轴,垂足为C,过点作轴,垂足为,证明,所以,根据得到,所以,写出对应点的坐标即可.【详解】解:如图,过点A作轴,垂足为C,过点作轴,垂足为,∵轴,轴,∴,∵将线段AB绕点O顺时针旋转90°得到线段,∴,∵,,∴,∴,∴,∵,∴,∴,∴,故答案为:.【考点】本题考查旋转的性质,证明是解答本题的关键.3、100【解析】【分析】由,可得,,由旋转的性质可得,,由三角形内角和定理得,计算求解即可.【详解】解:∵∴∴由旋转的性质可得∴∴故答案为:100.【考点】本题考查了平行的性质,旋转的性质,旋转角,等边对等角,三角形的内角和定理等知识.解题的关键在于找出旋转角.4、.【解析】【详解】解:由旋转可得,BE=BE'=5,BD=BD',∵D'C=4,∴BD'=BC﹣4,即BD=BC﹣4,∵DE∥AC,∴,即,解得BC=(负值已舍去),即BC的长为.故答案为.【考点】本题主要考查了旋转的性质,解一元二次方程以及平行线分线段成比例定理的运用,解题时注意:对应点到旋转中心的距离相等.解决问题的关键是依据平行线分线段成比例定理,列方程求解.5、2【解析】【分析】根据中心对称图形的概念即可求解.【详解】第1个图形,是中心对称图形,符合题意;第2个图形,不是中心对称图形,不符合题意;第3个图形,是中心对称图形,符合题意;第4个图形,不是中心对称图形,不符合题意.故答案为:2.【考点】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.三、解答题1、(1),;(2)是等腰直角三角形,理由见解析;(3)98【解析】【分析】(1)根据题意可证得,利用三角形的中位线定理得出,,即可得出数量关系,再利用三角形的中位线定理得出,得出,通过角的转换得出与互余,证得.(2)先证明,得出,同(1)的方法得出,,即可得出,同(1)的方法由,即可得出结论.(3)当最大时,的面积最大,而最大值是,,计算得出结论.【详解】(1)线段PM与PN的数量关系是,位置关系是.∵等腰中,,∴AB=AC,∵AD=AE,∴AB-AD=AC-AE,∴BD=CE,∵点,,分别为,,的中点,∴,,∴;∵,∴,∵,∴,∵(两直线平行内错角相等),∴,∴.(2)是等腰直角三角形.证明:由旋转可知,,,,∴,∴,,根据三角形的中位线定理可得,,,∴,∴是等腰三角形,同(1)的方法可得,,∴,同(1)的方法得,,,∵,∴,∵,∴,∴,∴是等腰直角三角形.(3)由(2)知,是等腰直角三角形,,∴最大时,面积最大,∵点在的延长线上,BD最大,∴,∴,∴.【考点】本题主要考查了三角形中位线定理,等腰直角三角形的性质与判定,全等三角形的性质与判定,直角三角形的性质的综合运用,熟练掌握中位线定理是解题关键.2、(1)(2)∠DNM的大小是定值,为120°(3)【解析】【分析】(1)连接CF.由等边三角形的性质易证△BAE≌△CAF(SAS),即得出.再根据三角形中位线定理即可求出;(2)连接BE,CF.利用全等三角形的性质证明∠EBC+∠BCF=120°,再利用三角形的中位线定理,三角形的外角的性质证明∠DNM=∠EBC+∠BCF即可;(3)取AC的中点J,连接BJ,结合三角形的中位线定理可求出BJ,JN.最后根据三角形三边关系即可得出结论.(1)解:如图,连接CF.∵△ABC是等边三角形,AD⊥BC,∴AB=BC=AC,∠BAD=∠CAD=30°.∵△AEF是等边三角形,∴∠EAF=60°,G为EF中点,∴∠EAG=∠GAF=30°.即在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴,∵N为CE的中点,G为EF中点,∴,∴;(2)∠DNM=120°是定值,证明如下,如图,连接BE,CF.同(1)可证△BAE≌△CAF(SAS),∴∠ABE=∠ACF.∵∠ABC+∠ACB=60°+60°=120°,∴∠EBC+∠BCF=∠ABC-∠ABE+∠ACB+∠ACF=120°.∵EN=NC,EM=MF,∴MN∥CF,∴∠ENM=∠ECF,∵BD=DC,EN=NC,∴DN∥BE,∴∠CDN=∠EBC,∵∠END=∠NDC+∠NCD,∴∠DNM=∠DNE+∠ENM=∠NDC+∠ACB+∠ACN+∠ECF=∠EBC+∠ACB+∠ACF=∠EBC+∠BCF=120°.综上可知∠DNM的大小是定值,为120°;(3)如图,取AC的中点J,连接BJ,BN.∵AJ=CJ,EN=NC,∴JN=AE=.∵BJ=AD=,∴BN≤BJ+JN,即BN≤,故线段BN的最大值为.【考点】本题属于几何变换综合题,考查了等边三角形的性质,全等三角形的判定和性质,三角形的中位线定理,三角形三边关系的应用.解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.3、(1)图形见解析;(2)证明见解析.【解析】【分析】(1)根据题意,利用旋转性质将图形补全,并按要求标清相应的字母即可;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠F为直角,利用SAS得到△BDC与△EFC全等,利用全等三角形对应角相等即可得证.【详解】(1)解:所补图形如图所示:(2)证明:由旋转的性质得:,∴.∵,∴.∴.∵,∴.∴.在和中,,∴.∴.【考点】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.4、(1)①见解析;②(2),理由见解析【解析】【分析】(1)①由题意,画出图形即可;②连接AQ,证四边形ABPQ是平行四边形,得AB=PC,再根据是等腰三角形即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论