版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、如图,在中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=bsinB B.b=csinB C.a=btanB D.b=ctanB2、若为锐角,,则等于(
)A. B. C. D.3、关于二次函数的最大值或最小值,下列说法正确的是()A.有最大值4 B.有最小值4 C.有最大值6 D.有最小值64、二次函数的顶点坐标为,图象如图所示,有下列四个结论:①;②;③④,其中结论正确的个数为(
)A.个 B.个 C.个 D.个5、在同一直角坐标系中,一次函数y=﹣kx+1与二次函数y=x2+k的大致图象可以是()A. B. C. D.6、如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东方向,且与他相距,则图书馆A到公路的距离为(
)A. B. C. D.二、多选题(7小题,每小题2分,共计14分)1、如图,在△ABC中,点D、E分别在边AB、AC上,且BD=2AD,CE=2AE,则下列结论中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE2、下列用尺规等分圆周的说法中,正确的是(
)A.在圆上依次截取等于半径的弦,就可以六等分圆B.作相互垂直的两条直径,就可以四等分圆C.按A的方法将圆六等分,六个等分点中三个不相邻的点三等分圆D.按B的方法将圆四等分,再平分四条弧,就可以八等分圆周3、在Rt△ABC中,∠C=90°,则下列式子不成立的是()A.sinA=sinB B.cosA=cosB C.tanA=tanB D.cotA=tanB4、如图,在⊙O中,AB为直径,BC为切线,弦ADOC,直线CD交BA的延长线于点E,连接BD.下列结论正确的是(
)A.CD是⊙O的切线 B.CO⊥DBC.△EDA∽△EBD D.5、下列说法不正确的是()A.相切两圆的连心线经过切点 B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦 D.相等的圆心角所对的弦相等6、如图,在四边形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,点P是边BC上的动点,若△ABP与△CDP相似,则BP=(
)A.3.6B.C.D.2.47、下列说法中,不正确的是(
)A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、如图,是⊙O的内接正三角形,点是圆心,点,分别在边,上,若,则的度数是____度.2、如图,已知DC为∠ACB的平分线,DE∥BC.若AD=8,BD=10,BC=15,求EC的长=_____.3、图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,操作平台C离地面的高度为_______米.(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)4、如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为_____.5、如图,I是△ABC的内心,∠B=60°,则∠AIC=_____.6、二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.7、已知二次函数y=x2+bx+c的顶点在x轴上,点A(m﹣1,n)和点B(m+3,n)均在二次函数图象上,求n的值为____.四、解答题(6小题,每小题10分,共计60分)1、某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?2、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为.求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由.3、在平面直角坐标系中,抛物线的对称轴为.求的值及抛物线与轴的交点坐标;若抛物线与轴有交点,且交点都在点,之间,求的取值范围.4、如图,在平面直角坐标系中,直线与轴、轴分别交于、两点,抛物线经过、两点;(1)求抛物线的解析式;(2)点为轴上一点,点为直线上一点,过作交轴于点,当四边形为菱形时,请直接写出点坐标;(3)在(2)的条件下,且点在线段上时,将抛物线向上平移个单位,平移后的抛物线与直线交于点(点在第二象限),点为轴上一点,若,且符合条件的点恰好有2个,求的取值范围.5、若二次函数图像经过,两点,求、的值.6、如图,抛物线与轴交于两点,与轴交于点,且,.(1)求抛物线的表达式;(2)点是抛物线上一点.①在抛物线的对称轴上,求作一点,使得的周长最小,并写出点的坐标;②连接并延长,过抛物线上一点(点不与点重合)作轴,垂足为,与射线交于点,是否存在这样的点,使得,若存在,求出点的坐标;若不存在,请说明理由.-参考答案-一、单选题1、B【解析】【分析】根据三角函数的定义进行判断,即可解决问题.【详解】∵中,,、、所对的边分别为a、b、c∴,即,则A选项不成立,B选项成立,即,则C、D选项均不成立故选:B.【考点】本题考查了三角函数的定义,熟记定义是解题关键.2、B【解析】【分析】根据tan45°=1求出即可.【详解】∵∠A为锐角,tanA=1,∴∠A=45°.故选B.【考点】本题考查了特殊角的三角函数值,主要考查学生的记忆能力和计算能力.3、D【解析】【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值.【详解】解:∵在二次函数中,a=2>0,顶点坐标为(4,6),∴函数有最小值为6.故选:D.【考点】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值.4、A【解析】【分析】根据二次函数的性质和已知条件,对每一项逐一进行判断即可.【详解】解:由图像可知a<0,c>0,∵对称轴在正半轴,∴>0,∴b>0,∴,故①正确;当x=2时,y>0,故,故③正确;函数解析式为:y=a(x-1)2+2=ax2-2ax+a+2假设成立,结合解析式则有a+2<,解得a<,故②,④正确;故选:A.【考点】本题考查了二次函数图象与系数的关系,结合图象,运用所学知识是解题关键.5、A【解析】【分析】二次函数图象与y轴交点的位置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=-kx+1经过的象限,对比后即可得出结论.【详解】解:由y=x2+k可知抛物线的开口向上,故B不合题意;∵二次函数y=x2+k与y轴交于负半轴,则k<0,∴﹣k>0,∴一次函数y=﹣kx+1的图象经过经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A.【考点】本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键.6、A【解析】【分析】根据题意可得△OAB为直角三角形,∠AOB=30°,OA=200m,根据三角函数定义即可求得AB的长.【详解】解:由已知得,∠AOB=90°60°=30°,OA=200m.则AB=OA=100m.故选:A.【考点】本题主要考查了解直角三角形的应用——方向角问题,正确记忆三角函数的定义是解决本题的关键.二、多选题1、ABD【解析】【分析】由已知条件易证DE∥BC,则△ABC∽△ADE,再由相似三角形的性质即可得到问题的选项.【详解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正确;∴△ABC∽△ADE,故A正确;∴DE:BC=AD:AB=1:3,故C错误;∴S△ABC=9S△ADE故D正确,∴其中成立的jABD,故选ABD.【考点】本题考查了平行四边形的性质以及相似三角形的判定和性质,证明DE∥BC是解题的关键.2、ABCD【解析】【分析】由圆心角、弧、弦的关系定理得出ABCD正确,即可得出结论.【详解】解:根据圆心角、弧、弦的关系定理得:在圆上依次截取等于半径的弦,六条弧相等,就可以六等分圆,∴A正确;∵相互垂直的两条直径得出4个相等的圆心角是直角,∴4条弧相等,∴B正确;在圆上依次截取等于半径的弦,六条弧相等,六个等分点中三个不相邻的点三等分圆,∴C正确;∵相互垂直的两条直径得出4个相等的圆心角是直角,再平分四条弧,就可以八等分圆周,∴D正确;故选:ABCD.【考点】本题考查了正多边形和圆、圆心角、弧、弦的关系定理;熟练掌握圆心角、弧、弦的关系定理,由题意得出相等的弧是解题的关键.3、ABC【解析】【分析】本题利用锐角三角函数的定义求解,即锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.【详解】解:、,,,故错误,符合题意;、,,,故错误,符合题意;、,,,故错误,符合题意;、,,则,故正确,不符合题意;故选:ABC.【考点】本题考查了锐角三角函数的定义,解题的关键是熟练掌握锐角三角函数的定义,即锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4、ABC【解析】【分析】由切线的性质得∠CBO=90°,首先连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;根据全等三角形的性质得到CD=CB,根据线段垂直平分线的判定定理得到即CO⊥DB;根据余角的性质得到∠ADE=∠BDO,等量代换得到∠EDA=∠DBE,根据相似三角形的判定定理得到△EDA∽△EBD;根据相似三角形的性质得到,于是得到ED•BC=BO•BE.【详解】解:A.证明:连接DO.∵AB为⊙O的直径,BC为⊙O的切线,∴∠CBO=90°,∵ADOC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;故选项正确,符合题意;B.证明:∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故选项正确,符合题意;C.证明:∵AB为⊙O的直径,DC为⊙O的切线,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故选项正确,符合题意;D.证明:∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED•BC=BO•BE,故选项错误,不符合题意.故选:ABC.【考点】本题主要考查了切线的判定、全等三角形的判定与性质以及相似三角形的判定与性质,注意掌握辅助线的作法,注意数形结合思想的应用是解答此题的关键.5、BCD【解析】【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.(1)等弧指的是在同圆或等圆中,能够完全重合的弧.长度相等的两条弧,不一定能够完全重合;(2)此弦不能是直径;(3)相等的圆心角所对的弦相等指的是在同圆或等圆中.【详解】解:A、根据圆的轴对称性可知此命题正确,不符合题意;B、等弧指的是在同圆或等圆中,能够完全重合的弧.而此命题没有强调在同圆或等圆中,所以长度相等的两条弧,不一定能够完全重合,此命题错误,符合题意;B、此弦不能是直径,命题错误,符合题意;C、相等的圆心角指的是在同圆或等圆中,此命题错误,符合题意;故选:BCD.【考点】本题考查的是两圆的位置关系、圆周角定理以及垂径定理,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.6、ABC【解析】【分析】根据相似求出相似比,根据相似比分类讨论计算出结果即可.【详解】解:∠B=∠C,根据题意:或,则:或,则:或,故答案为:或,故选:ABC.【考点】本题考查相似三角形得的性质与应用,能够熟练掌握相似三角形的性质是解决本题的关键.7、ABC【解析】【分析】根据垂径定理的推论,即如果一条直线满足:①垂直于弦,②平分弦,③过圆心,④平分优弧,⑤平分劣弧中的两个条件,即可推论出其余三个,逐一进行判断即可.【详解】解:A、由于直径也是弦,所以平分一条直径的弦不一定垂直这条直径,选项说法错误,符合题意;B、平分一条弧的直线不一定垂直于这条弧,应该是:过圆心,且平分一条弧的直线垂直于这条弧所对的弦,选项说法错误,符合题意;C、弦的垂线不一定经过这条弦所在的圆心,应该是:弦的垂直平分线必经过这条弦所在的圆心,选项说法错误,符合题意;D、在一个圆内,平分一条弧和它所对弦的直线必经过这个圆的圆心,选项说法正确,不符合题意;故选ABC.【考点】本题考查了垂径定理,解题的关键是掌握垂径定理及其推论.三、填空题1、120【解析】【分析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题.【详解】连接OA,OB,作OH⊥AC,OM⊥AB,如下图所示:因为等边三角形ABC,OH⊥AC,OM⊥AB,由垂径定理得:AH=AM,又因为OA=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本题答案为:120.【考点】本题考查圆与等边三角形的综合,本题目需要根据等角的互换将所求问题进行转化,构造辅助线是本题难点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、弧、圆周角的关系需熟练掌握.2、【解析】【分析】先由角平分线的定义及平行线的性质求得∠EDC=∠ECD,从而EC=DE;再DE∥BC,证得△ADE∽△ABC,然后根据相似三角形的性质列出比例式,求得DE的长,即为EC的长.【详解】解:∵DC为∠ACB的平分线∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案为:【考点】本题考查了角平分线的定义、平行线的性质、等腰三角形的判定及相似三角形的判定与性质,熟练掌握相关性质与定理是解题的关键.3、7.6【解析】【分析】作于,于,如图2,易得四边形为矩形,则,,再计算出,在中利用正弦可计算出,然后计算即可.【详解】解:作于E,于,如图2,∴四边形为矩形,∴,,∴,∴在中,,∴,∴,∴操作平台离地面的高度为.故答案是:.【考点】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用三角函数的定义进行几何计算.4、2【解析】【分析】利用二次函数图象上点的坐标特征可求出点A,B,C,D的坐标,由点A,D的坐标,利用待定系数法可求出直线AD的解析式,利用一次函数图象上点的坐标特征可求出点E的坐标,再利用二次函数图象上点的坐标特征可得出点P,Q的坐标,进而可求出线段PQ的长.【详解】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.【考点】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点P,Q的坐标是解题的关键.5、120°.【解析】【分析】根据三角形的内切圆的圆心是三角形三个角的平分线的交点即可求解.【详解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的内切圆的圆心是三角形三个角的平分线的交点,∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案为120°.【考点】此题主要考查利用三角形的内切圆的圆心是三角形三个角的平分线的交点性质进行角度求解,熟练掌握,即可解题.6、(1,0)【解析】【分析】根据表中数据得到点(-2,-3)和(0,-3)对称点,从而得到抛物线的对称轴为直线x=-1,再利用表中数据得到抛物线与x轴的一个交点坐标为(-3,0),然后根据抛物线的对称性就看得到抛物线与x轴的一个交点坐标.【详解】∵x=-2,y=-3;x=0时,y=-3,∴抛物线的对称轴为直线x=-1,∵抛物线与x轴的一个交点坐标为(-3,0),∴抛物线与x轴的一个交点坐标为(1,0).故答案为(1,0).【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.7、4【解析】【分析】由A、B坐标可得对称轴,由顶点在x轴上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐标代入即可求得n的值.【详解】解:∵点A(m﹣1,n)和点B(m+3,n)均在二次函数y=x2+bx+c图象上,∴,∴b=﹣2(m+1),∵二次函数y=x2+bx+c的顶点在x轴上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐标代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案为:4.【考点】本题考查了二次函数的性质,二次函数的顶点坐标,表示出b、c的值是解题的关键.四、解答题1、(1)y=﹣10x+540;(2)当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元【解析】【分析】(1)设函数关系式为y=kx+b,由销售单价为28元时,每天的销售量为260个;销售单价为30元时,每天的销量为240个;列方程组求解即可;(2)由每天销售利润=每个遮阳伞的利润×销售量,列出函数关系式,再由二次函数的性质求解即可;(1)解:设一次函数关系式为y=kx+b,由题意可得:,解得:,∴函数关系式为y=﹣10x+540;(2)解:由题意可得:w=(x﹣20)y=(x﹣20)(﹣10x+540)=﹣10(x﹣37)2+2890,∵﹣10<0,二次函数开口向下,∴当x=37时,w有最大值为2890,答:当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元.【考点】本题考查了一次函数和二次函数的实际应用,待定系数法求解析式,掌握二次函数的性质是解题的关键.2、;有最大值;存在满足条件的点,其坐标为或【解析】【分析】可设抛物线解析式为顶点式,由点坐标可求得抛物线的解析式,则可求得点坐标,利用待定系数法可求得直线解析式;设出点坐标,从而可表示出的长度,利用二次函数的性质可求得其最大值;过作轴,交于点,过和于,可设出点坐标,表示出的长度,由条件可证得为等腰直角三角形,则可得到关于点坐标的方程,可求得点坐标.【详解】解:抛物线的顶点的坐标为,可设抛物线解析式为,点在该抛物线的图象上,,解得,抛物线解析式为,即,点在轴上,令可得,点坐标为,可设直线解析式为,把点坐标代入可得,解得,直线解析式为;设点横坐标为,则,,,当时,有最大值;如图,过作轴交于点,交轴于点,作于,设,则,,是等腰直角三角形,,,当中边上的高为时,即,,,当时,,方程无实数根,当时,解得或,或,综上可知存在满足条件的点,其坐标为或.【考点】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在中主要是待定系数法的考查,注意抛物线顶点式的应用,在中用点坐标表示出的长是解题的关键,在中构造等腰直角三角形求得的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.3、(1)a=-1;坐标为,;(2).【解析】【分析】(1)利用抛物线的对称轴方程得到x=-=-1,解方程求出a即可得到抛物线的解析式为y=-x2-2x;然后解方程-x2-2x=0可得到抛物线与x轴的交点坐标;(2)抛物线y=-x2-2x+m由抛物线y=-x2-2x上下平移|m|和单位得到,利用函数图象可得到当x=1时,y<0,即-1-2+m<0;当x=-1时,y≥0,即-1+2+m≥0,然后解两个不等式求出它们的公共部分可得到m的范围.【详解】根据题意得,解得,所以抛物线的解析式为,当时,,解得,,所以抛物线与轴的交点坐标为,;抛物线抛物线由抛物线上下平移和单位得到,而抛物线的对称轴为直线,∵抛物线与轴的交点都在点,之间,∴当时,,即,解得;当时,,即,解得,∴的取值范围为.【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象的几何变换.4、(1);(2);;(3)【解析】【分析】(1)由题意易得,,然后代入抛物线解析式进行求解即可;(2)由题意可画出图象,设点,然后求出直线AB的解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道路修建劳务合同范本
- 郑州京翰教育合同范本
- 酒吧物业管理合同范本
- 酒店终身转让合同范本
- 酒店餐厅合作合同范本
- 钢管租赁买断合同范本
- led灯安装协议书
- 个体合伙合同协议书
- 供暖管道合同协议书
- 2025及以后5年中国精油市场前景研究与投资风险报告
- 2025智能美妆镜产品开发与市场需求调研报告
- 冬季防冻安全课件
- 2025护理法律法规学习课件
- 物流管理大学职业规划
- 煤矿后勤管理人员的岗位职责
- 医院职业暴露培训课件
- 2025-2026新苏教版小学1一年级数学上册(全册)测试卷(附答案)
- 2025年跨境电商税务合规服务合同协议(2025年)
- 2025年版《义务教育信息科技技术新课程标准》试题与答案
- 人工挖方孔桩模(板)施工方案
- 无人机制造工厂建设施工方案
评论
0/150
提交评论