版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》同步练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()A. B. C.4.5 D.4.32、如图,矩形ABCD的面积为1cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B,…;依此类推,则平行四边形AO2014C2015B的面积为()cmA.
B.
C.
D.3、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为()A.25° B.20° C.15° D.10°4、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)5、下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:2第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在▱ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC=6,PQ=4,则PC+AQ的最小值为________________.2、已知如图,点E,F分别在正方形的边,上,,若,,则_________.3、一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为10cm,则该矩形的面积为_______.4、如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.5、如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的序号为__.三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形中,,..点在上由点向点出发,速度为每秒;点在边上,同时由点向点运动,速度为每秒.当点运动到点时,点,同时停止运动.连接,设运动时间为秒.(1)当为何值时,四边形为平行四边形?(2)设四边形的面积为,求与之间的函数关系式.(3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数.(4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由.2、如图,平行四边形ABCD中,对角线AC、BD相交于点O,AB⊥AC,AB=3,AD=5,求BD的长.3、如图,已知矩形中,点,分别是,上的点,,且.(1)求证:;(2)若,求:的值.4、在中,,斜边,过点作,以AB为边作菱形ABEF,若,求的面积.5、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BE=BF.求证:∠DEF=∠DFE.
-参考答案-一、单选题1、A【解析】【分析】根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.【详解】解:∵四边形ABCD为正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵点G为DE的中点,∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故选A.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.2、C【解析】【分析】根据“同底等高”的原则可知平行四边形AOC1B底边AB上的高等于BC的,则有平行四边形AOC1B的面积,平行四边形AOC2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,则有平行四边形ABC3O2的面积,…;由此规律可进行求解.【详解】解:∵O1为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=×1=,∵平行四边形AO1C2B的对角线交于点O2,∴平行四边形AOC2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形ABC3O2的面积=××1=,…,依此类推,平行四边形ABC2014O2015的面积=cm2.故答案为:C.【点睛】本题主要考查矩形的性质与平行四边形的性质,熟练掌握矩形的性质与平行四边形的性质是解题的关键.3、D【解析】【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DBC′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折叠可得∠DBC′=∠DBC=50°,∴∠2=∠DBC′−∠DBA=50°−40°=10°,故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.4、A【解析】【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D点和C点的纵坐标相等,再求出CD=AB=5,得到C点横坐标,最后得到C点的坐标.【详解】解:四边形ABCD为平行四边形。且。C点和D的纵坐标相等,都为3.A点坐标为(0,0),B点坐标为(5,0),.D点坐标为(2,3),C点横坐标为,点坐标为(7,3).故选:A.【点睛】本题主要是考察了平行四边形的性质、利用线段长求点坐标,其中,熟练应用平行四边形对边平行且相等的性质,是解决与平行四边形有关的坐标题的关键.5、D【解析】【分析】两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.故选:D.【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.二、填空题1、【解析】【分析】利用平行四边形的知识,将的最小值转化为的最小值,再利用勾股定理求出MC的长度,即可求解;【详解】过点A作且,连接MP,∴四边形是平行四边形,∴,将的最小值转化为的最小值,当M、P、C三点共线时,的最小,∵,,∴,在中,;故答案是:.【点睛】本题主要考查了平行线的判定与性质,勾股定理,准确计算是解题的关键.2、14【解析】【分析】过点作的垂线,交延长线于点,先根据正方形的性质、三角形全等的判定定理证出,根据全等三角形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质即可得出答案.【详解】解:如图,过点作的垂线,交延长线于点,四边形是正方形,,,,,,在和中,,,,,,又,,在和中,,,,故答案为:14.【点睛】本题考查了正方形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造全等三角形是解题关键.3、【解析】【分析】先根据矩形的性质证明△ABC是等边三角形,得到,则,然后根据勾股定理求出,最后根据矩形面积公式求解即可.【详解】:如图所示,在矩形ABCD中,∠AOB=60°,,∵四边形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等边三角形,∴,∴,∴,∴,故答案为:.【点睛】本题主要考查了矩形的性质,勾股定理,等边三角形的性质与判定,解题的关键在于能够熟练掌握矩形的性质.4、####【解析】【分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵点E、F分别是AO、AD的中点,∴EF=OD=2.5cm,故答案为:2.5.【点睛】本题考查了矩形的性质的应用,勾股定理,三角形中位线的应用,解本题的关键是求出OD长及证明EF=OD.5、①②③【解析】【分析】①连接BE,可得四边形EFBG为矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,则∠OBF=∠OFB;由∠OBF=∠ADE,则∠OFB=∠ADE;由四边形ABCD为正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的结论可得∠BFG=∠ADE;④由于点E为AC上一动点,当DE⊥AC时,根据垂线段最短可得此时DE最小,最小值为2,由①知FG=DE,所以FG的最小值为2.【详解】解:①连接BE,交FG于点O,如图,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四边形EFBG为矩形.∴FG=BE,OB=OF=OE=OG.∵四边形ABCD为正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正确;②延长DE,交FG于M,交FB于点H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正确;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正确;④∵点E为AC上一动点,∴根据垂线段最短,当DE⊥AC时,DE最小.∵AD=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值为2,∴④错误.综上,正确的结论为:①②③.故答案为:①②③.【点睛】本题考查了全等三角形的性质与判定,正方形的性质,勾股定理,垂线段最短,掌握正方形的性质是解题的关键.三、解答题1、(1);(2)y=S四边形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)当t=4或
或时,为等腰三角形,理由见解析.【分析】(1)利用平行四边形的对边相等AQ=BP建立方程求解即可;
(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;
(3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;
(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.【详解】解:(1)∵在平行四边形中,,,由运动知,AQ=16−t,BP=2t,
∵四边形ABPQ为平行四边形,
∴AQ=BP,
∴16−t=2t
∴t=,
即:t=s时,四边形ABPQ是平行四边形;(2)过点A作AE⊥BC于E,如图,在Rt△ABE中,∠B=30°,AB=8,
∴AE=4,
由运动知,BP=2t,DQ=t,
∵四边形ABCD是平行四边形,
∴AD=BC=16,
∴AQ=16−t,
∴y=S四边形ABPQ=(BP+AQ)•AE=(2t+16−t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,
∵BC=16,
∴S四边形ABCD=16×4=64,
由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),
∵四边形ABPQ的面积是四边形ABCD的面积的四分之三
∴2t+32=×64,
∴t=8;
如图,当t=8时,点P和点C重合,DQ=8,
∵CD=AB=8,
∴DP=DQ,
∴∠DQC=∠DPQ,
∴∠D=∠B=30°,
∴∠DQP=75°;(4)①当AB=BP时,BP=8,
即2t=8,t=4;
②当AP=BP时,如图,∵∠B=30°,
过P作PM垂直于AB,垂足为点M,
∴BM=4,,解得:BP=,
∴2t=,
∴t=
③当AB=AP时,同(2)的方法得,BP=,
∴2t=,
∴t=
所以,当t=4或或时,△ABP为等腰三角形.【点睛】此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.2、【分析】根据平行四边形的性质可得,,勾股定理求得,,进而求得【详解】解:四边形是平行四边形AB⊥AC,在中,在中,【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.3、(1)见解析;(2)【分析】(1)根据矩形的性质得到,由垂直的定义得到,根据余角的性质得到,根据全等三角形的判定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年农产品出口运输协议
- 新产品上市前准备与市场推广活动计划
- 2025浙江杭州创悦盈景衍商业运营管理有限公司招聘1人笔试历年参考题库附带答案详解
- 2025河北唐山国控港口管理有限公司工作人员招聘16人笔试历年参考题库附带答案详解
- 2025江西九江南山景区旅游发展有限公司招聘见习人员1人笔试历年参考题库附带答案详解
- 2025江苏淮安洪泽湖文旅集团有限公司招聘综合笔试历年参考题库附带答案详解
- 2025广西百色一号农业发展有限公司公开招聘4人笔试历年参考题库附带答案详解
- 2025山东烟台市集安资产经营管理有限公司招聘2人笔试历年参考题库附带答案详解
- 2025安徽安庆市金融控股集团有限公招聘人才拟录用笔试历年参考题库附带答案详解
- 2025四川西昌安宁水务建设工程有限公司招聘20人笔试历年参考题库附带答案详解
- 2025至2030赖氨酸行业发展趋势分析与未来投资战略咨询研究报告
- 2025年山东综评专科题目及答案
- 增强营销策略方案
- 【课件】2025年消防月主题培训全民消防生命至上安全用火用电
- 十五五规划12项重大部署专题解读
- 交通标识标牌安装工程施工方案方法
- 江苏省扬州市七校联盟2025-2026学年高三上学期第一次联考英语试题(含答案)
- 狂犬病规范门诊培训要点
- 2025年及未来5年中国量子测量行业市场全景评估及发展战略规划报告
- 矩阵论知到智慧树期末考试答案题库2025年哈尔滨工程大学
- 单元板块玻璃幕墙安装施工方案(41页)
评论
0/150
提交评论