中考数学总复习《 圆》考试历年机考真题集及参考答案详解(基础题)_第1页
中考数学总复习《 圆》考试历年机考真题集及参考答案详解(基础题)_第2页
中考数学总复习《 圆》考试历年机考真题集及参考答案详解(基础题)_第3页
中考数学总复习《 圆》考试历年机考真题集及参考答案详解(基础题)_第4页
中考数学总复习《 圆》考试历年机考真题集及参考答案详解(基础题)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《圆》考试历年机考真题集考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,一段公路的转弯处是一段圆弧,则的展直长度为()A.3π B.6π C.9π D.12π2、已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30° B.60° C.30°或150° D.60°或120°3、如图,AB是⊙O的直径,点E是AB上一点,过点E作CD⊥AB,交⊙O于点C,D,以下结论正确的是()A.若⊙O的半径是2,点E是OB的中点,则CD=B.若CD=,则⊙O的半径是1C.若∠CAB=30°,则四边形OCBD是菱形D.若四边形OCBD是平行四边形,则∠CAB=60°4、如图,AB是⊙O的弦,等边三角形OCD的边CD与⊙O相切于点P,连接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,则AD的长是()A.6 B.3 C.2 D.5、如图,、为的切线,、为切点,点为弧上一点,过点作的切线分别交、于、,若,则的周长等于(

).A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、若一个扇形的弧长是,面积是,则扇形的圆心角是__________度.2、圆锥形冰淇淋的母线长是12cm,侧面积是60πcm2,则底面圆的半径长等于_____.3、如图,正方形ABCD的边长为2a,E为BC边的中点,的圆心分别在边AB、CD上,这两段圆弧在正方形内交于点F,则E、F间的距离为.4、已知在平面直角坐标系中,点的坐标为是抛物线对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使为直角三角形的点的个数也随之确定.若抛物线的对称轴上存在3个不同的点,使为直角三角形,则的值是____.5、如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____三、解答题(5小题,每小题10分,共计50分)1、已知:如图,圆O是△ABC的外接圆,AO平分∠BAC.(1)求证:△ABC是等腰三角形;(2)当OA=4,AB=6,求边BC的长.2、如图,已知∠MAN,按下列要求补全图形.(要求利用没有刻度的直尺和圆规作图,不写作法,保留作图痕迹)①在射线AN上取点O,以点O为圆心,以OA为半径作⊙O分别交AM、AN于点C、B;②在∠MAN的内部作射线AD交⊙O于点D,使射线AD上的各点到∠MAN的两边距离相等,请根据所作图形解答下列问题;(1)连接OD,则OD与AM的位置关系是,理论依据是;(2)若点E在射线AM上,且DE⊥AM于点E,请判断直线DE与⊙O的位置关系;(3)已知⊙O的直径AB=6cm,当弧BD的长度为cm时,四边形OACD为菱形.3、如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.4、已知:..求作:,使它经过点和点,并且圆心在的平分线上,5、如图,在平面直角坐标系中,抛物线过点,,与y轴交于点C,连接BC,点N是第一象限抛物线上一点,连接NA,交y轴于点E,.(1)求抛物线的解析式;(2)求线段AN的长;(3)若点M在第三象限抛物线上,连接MN,,则这时点M的坐标为______(直接写出结果).-参考答案-一、单选题1、B【解析】【详解】分析:直接利用弧长公式计算得出答案.详解:的展直长度为:=6π(m).故选B.点睛:此题主要考查了弧长计算,正确掌握弧长公式是解题关键.2、D【解析】【分析】由图可知,OA=10,OD=5.根据特殊角的三角函数值求出∠AOB的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠E的度数即可.【详解】解:由图可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°即弦AB所对的圆周角的度数是60°或120°,故选D.【考点】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.3、C【解析】【分析】根据垂径定理,解直角三角形知识,一一求解判断即可.【详解】解:A、∵OC=OB=2,∵点E是OB的中点,∴OE=1,∵CD⊥AB,∴∠CEO=90°,CD=2CE,∴,∴,本选项错误不符合题意;B、根据,缺少条件,无法得出半径是1,本选项错误,不符合题意;C、∵∠A=30°,∴∠COB=60°,∵OC=OB,∴△COB是等边三角形,∴BC=OC,∵CD⊥AB,∴CE=DE,∴BC=BD,∴OC=OD=BC=BD,∴四边形OCBD是菱形;故本选项正确本选项符合题意.D、∵四边形OCBD是平行四边形,OC=OD,所以四边形OCBD是菱形∴OC=BC,∵OC=OB,∴OC=OB=BC,∴∠BOC=60°,∴,故本选项错误不符合题意..故选:C.【考点】本题考查了圆周角定理,垂径定理,菱形的判定和性质,等边三角形的判定和性质,正确的理解题意是解题的关键.4、C【解析】【分析】如图,过作于过作于先证明三点共线,再求解的半径,证明四边形是矩形,再求解从而利用勾股定理可得答案.【详解】解:如图,过作于过作于是的切线,三点共线,为等边三角形,四边形是矩形,故选:【考点】本题考查的是等腰三角形,等边三角形的性质,勾股定理的应用,矩形的判定与性质,切线的性质,锐角三角函数的应用,灵活应用以上知识是解题的关键.5、B【解析】【分析】由切线长定理可得,然后根据线段之间的转化即可求得的周长.【详解】∵、为的切线,所以,又∵为的切线,∴,∴的周长.故选:B.【考点】此题考查了圆中切线长定理的运用,解题的关键是熟练掌握切线长定理.二、填空题1、60【解析】【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【详解】解:扇形的面积==6π,解得:r=6,又∵=2π,∴n=60.故答案为:60.【考点】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法.2、5cm.【解析】【分析】设圆锥的底面圆的半径长为rcm,根据圆锥的侧面积公式计算即可.【详解】解:设圆锥的底面圆的半径长为rcm.则×2π•r×12=60π,解得:r=5(cm),故答案为5cm.【考点】圆锥的侧面积公式是本题的考点,牢记其公式是解题的关键.3、a.【解析】【分析】作DE的中垂线交CD于G,则G为的圆心,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,依据勾股定理可得GE=FG=a,根据四边形EGFH是菱形,四边形BCGH是矩形,即可得到Rt△OEG中,OE=a,即可得到EF=a.【详解】如图,作DE的中垂线交CD于G,则G为的圆心,同理可得,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,设GE=GD=x,则CG=2a-x,CE=a,Rt△CEG中,(2a-x)2+a2=x2,解得x=a,∴GE=FG=a,同理可得,EH=FH=a,∴四边形EGFH是菱形,四边形BCGH是矩形,∴GO=BC=a,∴Rt△OEG中,OE=,∴EF=a,故答案为a.【考点】本题主要考查了正方形的性质以及相交两圆的性质,相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.注意:在习题中常常通过公共弦在两圆之间建立联系.4、2或【解析】【分析】分,和确定点M的运动范围,结合抛物线的对称轴与,,共有三个不同的交点,确定对称轴的位置即可得出结论.【详解】解:由题意得:O(0,0),A(3,4)∵为直角三角形,则有:①当时,∴点M在与OA垂直的直线上运动(不含点O);如图,②当时,,∴点M在与OA垂直的直线上运动(不含点A);③当时,,∴点M在与OA为直径的圆上运动,圆心为点P,∴点P为OA的中点,∴∴半径r=∵抛物线的对称轴与x轴垂直由题意得,抛物线的对称轴与,,共有三个不同的交点,∴抛物线的对称轴为的两条切线,而点P到切线,的距离,又∴直线的解析式为:;直线的解析式为:;∴或4∴或-8故答案为:2或-8【考点】本题是二次函数的综合题型,其中涉及到的知识点有圆的切线的判定,直角三角形的判定,综合性较强,有一定难度.运用数形结合、分类讨论是解题的关键.5、【解析】【分析】连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案为.【考点】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.三、解答题1、(1)见解析;(2)3【解析】【分析】(1)连接OB、OC,先证明∠OBA=∠OCA=∠BAO=∠CAO,再证明△OAB≌△OAC得AB=AC,问题得证;(2)延长AO交BC于点H,先证明AH⊥BC,BH=CH,设OH=b,BH=CH=a,根据OA=4,AB=6,由勾股定理列出a、b的方程组,解得a、b,便可得BC.【详解】解:(1)连接OB、OC,∵OA=OB=OC,OA平分∠BAC,∴∠OBA=∠OCA=∠BAO=∠CAO,在△OAB和△OAC中,,∴△OAB≌△OAC(AAS),∴AB=AC即△ABC是等腰三角形;(2)延长AO交BC于点H,∵AH平分∠BAC,AB=AC,∴AH⊥BC,BH=CH,设OH=b,BH=CH=a,∵BH2+OH2=OB2,OA=4,AB=6,则①BH2+AH2=AB2,OA=4,AB=6,则②②-①得:把代入①得:(舍)∴BC=2a=3.【考点】本题考查了三角形的全等,等腰三角形的性质,圆的基本性质,勾股定理,方程组的思想,掌握以上知识是解题的关键.2、(1)平行;内错角相等,两直线平行;(2)相切,理由见解析;(3)π【解析】【分析】(1)根据角平分线的定义、圆的性质可得,根据内错角相等,两直线平行即可得证;(2)利用切线的定义即可判定;(3)根据菱形的性质、圆的半径相等可得是等边三角形,利用等边三角形的性质可得,可得,利用弧长公式即可求解.【详解】解:补全图形如下:;(1),∵根据作图可知AD平分∠MAN,∴,∵,∴,∴,∴(内错角相等,两直线平行);(2)相切,理由如下:∵DE⊥AM,,∴,∴直线DE与⊙O相切;(3)∵四边形OACD为菱形,∴,∴,∴是等边三角形,∴,∴,∴.【考点】本题考查尺规作图、切线的判定与性质、等边三角形的判定与性质、弧长公式等内容,掌握上述基本性质定理是解题的关键.3、(1)见解析(2)【解析】【分析】(1)根据勾股定理的逆定理得到∠AEM=90°,由于,根据平行线的性质得∠ABC=90°,然后根据切线的判定定理即可得到BC是⊙O的切线;(2)连接OM,设⊙O的半径是r,在Rt△OEM中,根据勾股定理得到r2=32+(4−r)2,解方程即可得到⊙O的半径,即可得出答案.【详解】(1)证明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE−OA=4−r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4−r)2,解得:r=,∴AB=2r=.【考点】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了勾股定理和勾股定理的逆定理.4、见详解.【解析】【分析】要作圆,即需要先确定其圆心,先作∠A的角平分线,再作线段BC的垂直平分线相交于点O,即O点为圆心.【详解】解:根据题意可知,先作∠A的角平分线,再作线段BC的垂直平分线相交于O,即以O点为圆心,OB为半径,作圆O,如下图所示:【考点】此题主要考查了学生对确定圆心的作法,要求学生熟练掌握应用.5、(1)(2)(3)【解析】【分析】(1)把,代入,待定系数法求解析式即可;(2)根据解析式求得,证明≌可得,进而可得,求得直线AN的解析式为,联立抛物线解析式即可求得点的坐标,过点N作轴于点D,勾股定理即可求得线段AN的长;(3)设的外接圆为圆R,圆心R的坐标为,过点R作轴于点G,过点M作的延长线于点H,连接AR,MR,NR.证明≌可得,,,进而表示出点,将点M的坐标代入抛物线表达式得出④式,根据得出⑤式,联立求解即可求得点的坐标(1)把,代入得:,解得,故抛物

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论