重难点解析沪科版9年级下册期末试题【基础题】附答案详解_第1页
重难点解析沪科版9年级下册期末试题【基础题】附答案详解_第2页
重难点解析沪科版9年级下册期末试题【基础题】附答案详解_第3页
重难点解析沪科版9年级下册期末试题【基础题】附答案详解_第4页
重难点解析沪科版9年级下册期末试题【基础题】附答案详解_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版9年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下面是由一些完全相同的小立方块搭成的几何体从三个方向看到的形状图.搭成这个几何体所用的小立方块的个数是()A.个 B.个 C.个 D.个2、如图,AB,CD是⊙O的弦,且,若,则的度数为()A.30° B.40° C.45° D.60°3、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为()A.64° B.52° C.42° D.36°4、在一个不透明的口袋中装有3张完全相同的卡片,卡片上面分别写有数字,0,2,从中随机抽出两张不同卡片,则下列判断正确的是()A.数字之和是0的概率为0 B.数字之和是正数的概率为C.卡片上面的数字之和是负数的概率为 D.数字之和分别是负数、0、正数的概率相同5、如图,中,,O是AB边上一点,与AC、BC都相切,若,,则的半径为()A.1 B.2 C. D.6、下列汽车标志中既是轴对称图形又是中心对称图形的是()A. B. C. D.7、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()A.2个 B.3个 C.4个 D.5个8、如图,A,B,C是正方形网格中的三个格点,则是()A.优弧 B.劣弧 C.半圆 D.无法判断第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=110°,则的长为__.2、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.3、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.4、如图,已知⊙O的半径为2,弦AB的长度为2,点C是⊙O上一动点若△ABC为等腰三角形,则BC2为_______.5、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.6、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.7、第24届世界冬季奥林匹克运动会,于2022年2月4日在中国北京市和河北省张家口市联合举行,其会徽为“冬梦”,这是中国历史上首次举办冬季奥运会.如图,是一幅印有北京冬奥会会徽且长为3m,宽为2m的长方形宣传画,为测量宣传画上会徽图案的面积,现将宣传画平铺,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在会徽图案上的频率稳定在0.15左右,由此可估计宣传画上北京冬奥会会徽图案的面积约为______.三、解答题(7小题,每小题0分,共计0分)1、如图,是的弦,是上的一点,且,于点,交于点.若的半径为6,求弦的长.2、在△ABC与△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如图1,若点D与A重合,AC与EF交于P,且∠CAE=30°,CE,求EP的长;(2)如图2,若点D与C重合,EF与BC交于点M,且BM=CM,连接AE,且∠CAE=∠MCE,求证:AE+MF=CE;(3)如图3,若点D与A重合,连接BE,且∠ABE∠ABC,连接BF,CE,当BF+CE最小时,直接出的值.3、如图,在6×6的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,A,B两点均在格点上.请按要求在图①,图②,图③中画图:(1)在图①中,画等腰△ABC,使AB为腰,点C在格点上.(2)在图②中,画面积为8的四边形ABCD,使其为中心对称图形,但不是轴对称图形,C,D两点均在格点上.(3)在图③中,画△ABC,使∠ACB=90°,面积为5,点C在格点上.4、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.(1)图1中的“弦图”的四个直角三角形组成的图形是对称图形(填“轴”或“中心”).(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.5、如图,已知AB是⊙O的直径,,连接OC,弦,直线CD交BA的延长线于点.(1)求证:直线CD是⊙O的切线;(2)若,,求OC的长.6、如图,在⊙O中,弦AC与弦BD交于点P,AC=BD.(1)求证AP=BP;(2)连接AB,若AB=8,BP=5,DP=3,求⊙O的半径.7、一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4随机摸取一个小球后,不放回,再随机摸出一个小球,分别求下列事件的概率:(1)两次取出的小球标号和为奇数;(2)两次取出的小球标号和为偶数.-参考答案-一、单选题1、D【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】解:综合主视图,俯视图,左视图,底层有5个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是6,故选D.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.2、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.【详解】解:∵,∴,∵,∴,故选:B.【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.3、B【分析】先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.【详解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面内绕点A旋转到△AB′C′的位置,∴∠CAC′等于旋转角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋转角为52°.故选:B.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.4、A【分析】列树状图,得到共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,依次判断即可.【详解】解:列树状图如下:共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,A.数字之和是0的概率为0,故该项符合题意;B.数字之和是正数的概率为,故该项不符合题意;C.卡片上面的数字之和是负数的概率为,故该项不符合题意;D.数字之和分别是负数、0、正数的概率不相同,故该项不符合题意;故选:A.【点睛】此题考查了列树状图求事件的概率,概率的计算公式,正确列出树状图解答是解题的关键.5、D【分析】作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明△ADO∽△ACB,然后利用相似比得到,再根据比例的性质求出r即可.【详解】解:作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,∵⊙O与AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四边形ODCE为正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故选:D.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.6、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、A【分析】根据轴对称图形与中心对称图形的概念进行判断.【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.8、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.二、填空题1、##【分析】连接OA、OC,先求出∠ABC的度数,然后得到∠AOC,再由弧长公式即可求出答案.【详解】解:连接OA、OC,如图,∵四边形ABCD是⊙O的内接四边形,∠D=110°,∴,∴,∴;故答案为:.【点睛】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式.2、5或3【分析】分点P在圆内或圆外进行讨论.【详解】解:①当点P在圆内时,⊙O的直径长为8+2=10(cm),半径为5cm;②当点P在圆外时,⊙O的直径长为8-2=6(cm),半径为3cm;综上所述:⊙O的半径长为5cm或3cm.故答案为:5或3.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3、①②④【分析】连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.【详解】解:连接OM,∵PE为的切线,∴,∵,∴,∴,∵,,∴,即AM平分,故①正确;∵AB为的直径,∴,∵,,∴,∴,∴,故②正确;∵,∴,∵,∴,∴的长为,故③错误;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,设,则,∴,在中,,∴,∴,由①可得,,故④正确,故答案为:①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.4、4或12或【分析】分三种情况讨论:当AB=BC时、当AB=AC时、当AC=BC时,根据垂径定理和勾股定理即可求解.【详解】解:如图1,当AB=BC时,BC=2,故BC2=4;如图2,当AB=AC=2时,过A作AD⊥BC于D,连接OC,∴BD=CD,设OD=x,则在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如图3,当AC=BC时,则C在AB的垂直平分线上,∴CD经过圆心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,综上,BC2为4或12或故答案为:4或12或.【点睛】本题考查了垂径定理,等腰三角形的性质,勾股定理的应用,熟练掌握性质定理是解题的关键.5、35°【分析】根据旋转的性质可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°−30°×2=40°,∠ADO=∠A=(180°−∠AOD)=(180°−30°)=75°,由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.故答案为:35°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.6、【分析】如图,取的中点,连接,,,证明,进而证明在上运动,且垂直平分,根据,求得最值,根据正方形的性质和勾股定理求得的长即可求得的最小值.【详解】解:如图,取的中点,连接,,,将线段MN绕点M顺时针旋转60°得到线段MQ,,是等边三角形,,是的中点,是的中点是等边三角形,即在和中,又是的中点点在上是的中点,是等边三角,又垂直平分即的最小值为四边形是正方形,且的最小值为故答案为:【点睛】本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键.7、0.9【分析】根据题意可得长方形的面积,然后依据骰子落在会徽图案上的频率稳定在0.15左右,总面积乘以频率即为会徽图案的面积.【详解】解:由题意可得:长方形的面积为,∵骰子落在会徽图案上的频率稳定在0.15左右,∴会徽图案的面积为:,故答案为:.【点睛】题目主要考查根据频率计算满足条件的情况,理解题意,熟练掌握频率的计算方法是解题关键.三、解答题1、【分析】连接OB,由圆周角定理得出∠AOB=2∠ACB=120°,再由垂径定理得出∠AOE=∠AOB=60°、AB=2AE,在Rt△AOE中,由OA=2OE求解可得答案.【详解】如图,连接OB,则∠AOB=2∠ACB=120°,∵OD⊥AB,∴∠AOE=∠AOB=60°,∵AO=6,∴在Rt△AOE中,,∴AB=2AE,故答案为:.【点睛】本题主要考查圆周角定理,解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2、(1);(2)证明见详解;(3).【分析】(1)过点P作PG⊥EC于G,根据等腰直角三角形得出∠B=∠C=45°,根据PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根据三角形外角性质∠EPC=75°,可求∠EPG=30°,根据30°直角三角形性质得出EP=2EG,根据勾股定理根据EC=EG+GC=EG+,可求EG=即可;(2)连结AE,在CE上截取EJ=AE,连结AJ,根据∠MAH=45°=∠HEC,可得点A、M、C、E四点共圆,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ为等腰直角三角形,根据根据勾股定理AJ=,得出∠CAE=∠MCE,可证∠JAC=∠JCA,可得AJ=JC=,先证△CHM∽△ECM,再证△AEM≌△HEC(AAS),得出EM=EC,再证△AME≌△MCF(AAS),得出AE=MF即可;(3)分两种情况,当BE在∠ABC的平分线上时,与BE在△ABC外部时,当BE在∠ABC的平分线上时,作∠ABC的平分线交AC于O,将△AEC逆时针旋转90°得到△AFC′,过点O作OP⊥BC于P,则点E在BO上,有∠ABE=∠ABC,先证B、A、C′三点共线,根据两点之交线段最短可得BF+CE=BF+C′F≥BC′,当点F在BC′上时,BF+CE最短=BC′,此时点E在AC上与点O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根据勾股定理,当BE在△ABC外部时,∠EBA=,将△EAC逆时针旋转90°得到△FAC′,先证B、A、C′三点共线,根据两点之间线段最短可得BF+CE=BF+FC′≥BC′,当点F在BC′上时,BF+CE最短=BC′,再证EF=BF,然后根据勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根据勾股定理即可.【详解】解:(1)过点P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根据勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)连结AE,在CE上截取EJ=AE,连结AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴点A、M、C、E四点共圆,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根据勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分两种情况,当BE在∠ABC的平分线上时,与BE在△ABC外部时,当当BE在∠ABC的平分线上时,作∠ABC的平分线交AC于O,将△AEC逆时针旋转90°得到△AFC′,过点O作OP⊥BC于P,则点E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三点共线,∴BF+CE=BF+C′F≥BC′,当点F在BC′上时,BF+CE最短=BC′,此时点E在AC上与点O重合,∵BO为∠ABC的平分线,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根据勾股定理,∴;当BE在△ABC外部时,∠EBA=,将△EAC逆时针旋转90°得到△FAC′,则△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三点共线,∴BF+CE=BF+FC′≥BC′,∴点F在BC′上时,BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根据勾股定理,∴.综合.【点睛】本题考查等腰直角三角形性质,三角形外角性质,30°直角三角形性质,勾股定理,三角形全等判定与性质,四点共圆,同弧所对圆周角性质,三角形相似判定与性质,图形旋转性质,最短路径问题,角平分线性质,分类讨论思想,本题难度大,应用知识多,是中考压轴题,利用辅助线作出正确图形是解题关键.3、(1)见解析;(2)见解析;(3)见解析【分析】(1)因为AB=5,作腰为5的等腰三角形即可(答案不唯一);(2)作边长为2,高为4的平行四边形即可;(3)根据(1)的结论,作BG边的中线,即可得解.【详解】解:(1)如图①中,△ABC即为所求作(答案不唯一);(2)如图②中,平行四边形ABCD即为所求作;(3)如图③中,△ABC即为所求作(答案不唯一);∵AB=AG,BC=CG,∴AC⊥BG,∵△ABG的面积为,∴△ABC的面积为5,且∠ACB=90°.【点睛】本题考查作图-应用与设计,等腰三角形的判定和性质,勾股定理及其逆定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.4、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论