基础强化浙江省永康市中考数学真题分类(平行线的证明)汇编专项测试试卷(含答案详解版)_第1页
基础强化浙江省永康市中考数学真题分类(平行线的证明)汇编专项测试试卷(含答案详解版)_第2页
基础强化浙江省永康市中考数学真题分类(平行线的证明)汇编专项测试试卷(含答案详解版)_第3页
基础强化浙江省永康市中考数学真题分类(平行线的证明)汇编专项测试试卷(含答案详解版)_第4页
基础强化浙江省永康市中考数学真题分类(平行线的证明)汇编专项测试试卷(含答案详解版)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省永康市中考数学真题分类(平行线的证明)汇编专项测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,若,,则:①;②;③平分;④;⑤,其中正确的结论是A.1个 B.2个 C.3个 D.4个2、如图,直线a、b被直线c所截.若∠1=55°,则∠2的度数是(

)时能判定a∥b.A.35° B.45° C.125° D.145°3、如图点E在BC的延长线上,则下列条件中,不能判定ABCD的是(

)A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180°4、如图,在△ABC中,∠C=70º,沿图中虚线截去∠C,则∠1+∠2=(

)A.360º B.250º C.180º D.140º5、如图,在△ABC中,∠A=90°,BE,CD分别平分∠ABC和∠ACB,且相交于F,,于点G,则下列结论①∠CEG=2∠DCA;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠A;⑤∠DFE=135°,其中正确的结论是(

)A.①②③ B.①③④ C.①③④⑤ D.①②③④6、如图,点E在的延长线上,下列条件不能判断的是(

)A. B. C. D.7、将一副学生用的三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)如图叠放,则下列4个结论中正确的个数有(

)①∠AOC+∠BOD=90°;②∠AOC=∠BOD;③∠AOC-∠CEA=15°;④如果OB平分∠DOC,则OC平分∠AOBA.0 B.1 C.2 D.38、如图,和是分别沿着、边翻折形成的,若,则的度数为(

)A.100° B.90° C.85° D.80°第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图a是长方形纸带,∠DEF=16°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是__.2、如图,在中,平分,DEAC,若,,那么__.3、如图,则∠A+∠B+∠C+∠D+∠E的度数是__.4、如图,用铁丝折成一个四边形ABCD(点C在直线BD的上方),且∠A=70°,∠BCD=120°,若使∠ABC、∠ADC平分线的夹角∠E的度数为100°,可保持∠A不变,将∠BCD______(填“增大”或“减小”)________°.5、如图,一副三角板按如图放置,则∠DOC的度数为______.6、用一组整数a,b,c的值说明命题“若a>b>c,则a+b>c”是错误的,这组值可以是a=__,b=__,c=__.7、如图,在△ABC中,AD平分∠BAC,如果∠B=80°,∠C=40°,那么∠ADC的度数等于_____.三、解答题(7小题,每小题10分,共计70分)1、如图,点D和点C在线段BE上,,,.求证:.2、如图,直线DE、FM,分别交的两边于N、G,P、Q,若吗?如果平行请说明理由.3、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.4、如图,AB//CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD//BC.5、如图,在中,,,AD是的角平分线,求的度数.6、点E在射线DA上,点F、G为射线BC.上两个动点,满足∠DBF=∠DEF,∠BDG=∠BGD,DG平分∠BDE.(1)如图,当点G在F右侧时,求证:;(2)如图,当点G在BF左侧时,求证:;(3)如图,在(2)的条件下,P为BD延长线上一点,DM平分∠BDG,交BC于点M,DN平分∠PDM,交EF于点N,连接NG,若DG⊥NG,,求∠B的度数.7、(1)如图(a),BD平分,CD平分.试确定和的数量关系.(2)如图(b),BE平分,CE平分外角.试确定和的数量关系.(3)如图(c),BF平分外角,CF平分外角.试确定和的数量关系.-参考答案-一、单选题1、C【解析】【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出,得出,①正确;由平行线的性质得出⑤正确;即可得出结果.【详解】解:,,,故②正确;,,,故①正确;,故⑤正确;而不一定平分,不一定等于,故③,④错误;故选:C.【考点】本题考查了平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质,并能进行推理论证.2、C【解析】【分析】根据内错角相等,两直线平行的判定定理进行解答.【详解】解:当∠1=∠3时,a∥b,∴∠3=∠1=55°,∵∠2+∠3=180°,∴∠2=125°,∴当∠2=125°时,a∥b,故选:C.【考点】本题考查了平行线的性质,熟记“内错角相等,两直线平行”是解题的关键.3、C【解析】【分析】根据平行线的判定定理进行逐一分析解答即可.【详解】解:A、正确,符合“内错角相等,两条直线平行”的判定定理;B、正确,符合“同位角相等,两条直线平行”的判定定理;C、错误,若∠3=∠4,则AD∥BE;D、正确,符合“同旁内角互补,两条直线平行”的判定定理;故选:C.【考点】本题考查的是平行线的判定定理,比较简单.4、B【解析】【分析】根据三角形内角和定理得出∠A+∠B=110°,进而利用四边形内角和定理得出答案.【详解】解:∵△ABC中,∠C=70°,∴∠A+∠B=180°-∠C,∴∠1+∠2=360°-110°=250°,故选:B.【考点】本题主要考查了多边形内角和定理,根据题意得出∠A+∠B的度数是解题关键.5、C【解析】【分析】根据平行线的性质与角平分线的定义即可判断①;只需要证明∠ADC+∠ACD=90°,∠GCD+∠BCD=90°,即可判断③;根据角平分线的定义和三角形内角和定理先推出,即可判断④⑤;根据现有条件无法推出②.【详解】解:∵CD平分∠ACB,∴∠ACB=2∠DCA,∠ACD=∠BCD∵,∴∠CEG=∠ACB=2∠DCA,故①正确;∵∠A=90°,CG⊥EG,,∴∠ADC+∠ACD=90°,CG⊥BC,即∠BCG=90°,∴∠GCD+∠BCD=90°,又∵∠BCD=∠ACD,∴∠ADC=∠GDC,故③正确;∵∠A=90°,∴∠ABC+∠ACB=90°,∵BE,CD分别平分∠ABC,∠ACB,∴,∴,∴∠DFB=180°-∠BFC=45°,∴,故④正确;∵∠BFC=135°,∴∠DFE=∠BFC=135°,故⑤正确;根据现有条件,无法推出CA平分∠BCG,故②错误;故选C.【考点】本题主要考查了平行线的性质,角平分线的定义,三角形内角和定理,熟知平行线的性质,角平分线的定义是解题的关键.6、D【解析】【分析】直接利用平行线的判定方法分别判断得出答案.【详解】解:A、当∠5=∠B时,AB∥CD,不合题意;B、当∠1=∠2时,AB∥CD,不合题意;C、当∠B+∠BCD=180°时,AB∥CD,不合题意;D、当∠3=∠4时,AD∥CB,符合题意;故选:D.【考点】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.7、D【解析】【分析】根据同角的余角相等可得∠AOC=∠BOD;根据三角形的内角和即可得出∠AOC-∠CEA=15°;根据角平分线的定义可判定OC平分∠AOB.【详解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB,即∠BOD=∠AOC,故②正确;如图,AB与OC交于点P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正确;如果OB平分∠DOC,则∠DOB=∠BOC=45°,则∠AOC=∠BOC=45°,故OC平分∠AOB,故④正确;由②知:∠AOC=∠BOD,故当∠AOC=∠BOD=45°时,∠AOC+∠BOD=90°成立,否则不成立,故①不正确;综上,②③④正确,共3个,故选:D.【考点】本题考查了余角以及三角形内角和定理,角平分线的定义,熟知余角的性质以及三角形内角和是180°是解答此题的关键.8、A【解析】【分析】先根据三角形的内角和定理易计算出∠1=130°,∠2=35°,∠3=15°,根据折叠的性质得到∠1=∠BAE=130°,∠E=∠3=15°,∠ACD=∠E=15°,可计算出∠EAC,然后根据∠α+∠E=∠EAC+∠ACD,即可得到∠α=∠EAC.【详解】解:设∠3=3x,则∠1=26x,∠2=7x,∵∠1+∠2+∠3=180°,∴26x+7x+3x=180°,解得x=5°.∴∠1=130°,∠2=35°,∠3=15°.∵△ABE是△ABC沿着AB边翻折180°形成的,∴∠1=∠BAE=130°,∠E=∠3=15°.∴∠EAC=360°-∠BAE-∠BAC=360°-130°-130°=100°.又∵△ADC是△ABC沿着AC边翻折180°形成的,∴∠ACD=∠E=15°.∵∠α+∠E=∠EAC+∠ACD,∴∠α=∠EAC=100°.故选:A.【考点】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及周角的定义.二、填空题1、132°##132度【解析】【分析】先由矩形的性质得出∠BFE=∠DEF=16°,再根据折叠的性质得出∠CFG=180°﹣2∠BFE,由∠CFE=∠CFG﹣∠EFG即可得出答案.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠BFE=∠DEF=16°,∴∠CFE=∠CFG﹣∠EFG=180°﹣2∠BFE﹣∠EFG=180°﹣3×16°=132°,故答案为:132°.【考点】本题考查了翻折变换的性质、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.2、30°##30度【解析】【分析】由三角形的内角和定理可求解∠BAC的度数,结合角平分线的定义可得∠CAD的度数,利用平行线的性质可求解.【详解】解:∵∠C=75°,∠B=45°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠CAD∠BAC=30°,∵DE∥AC,∴∠ADE=∠CAD=30°.故答案为30°.【考点】本题主要考查三角形的内角和定理,平行线的性质,角平分线的定义,求解∠CAD的度数.3、180°【解析】【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.【详解】解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∵∠B+∠E+∠4=180°,∴∠B+∠E+∠A+∠D+∠C=180°.故答案为:180°.【考点】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.4、

增大

10【解析】【分析】利用三角形的外角性质先求得∠ABE+∠ADE=30°,根据角平分线的定义得到∠ABC+∠ADC=60°,再利用三角形的外角性质求解即可.【详解】解:如图,连接AE并延长,连接AC并延长,∠BED=∠BEF+∠DEF=∠ABE+∠BAD+∠ADE=100°,∵∠BAD=70°,∴∠ABE+∠ADE=30°,∵BE,DE分别是∠ABC、∠ADC平分线,∴∠ABC+∠ADC=2(∠ABE+∠ADE)=60°,同上可得,∠BCD=∠BAD+∠ABC+∠ADC=130°,130°-120°=10°,∴∠BCD增大了10°.故答案为:增大,10.【考点】本题考查了三角形的外角性质,三角形的内角和定理,角平分线的定义等知识,熟练运用题目中所给的结论是解题的关键.5、【解析】【分析】根据题意得:∠ACB=30°,∠ACD=45°,∠D=90°,从而得到∠OCD=15°,再由再由直角三角形两锐角互余,即可求解.【详解】解:根据题意得:∠ACB=30°,∠ACD=45°,∠D=90°,∴∠OCD=∠ACD-∠ACB=15°,∴∠DOC=90°-∠OCD=75°.故答案为:75°【考点】本题主要考查了直角三角形的性质,根据题意得到∠ACB=30°,∠ACD=45°,∠D=90°是解题的关键.6、

-2

-3

-4【解析】【分析】根据题意选择a、b、c的值,即可得出答案,答案不唯一.【详解】解:当a=﹣2,b=﹣3,c=﹣4时,﹣2>﹣3>﹣4,则(﹣2)+(﹣3)<(﹣4),∴命题若a>b>c,则a+b>c”是错误的;故答案为:﹣2,﹣3,﹣4.【考点】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7、110°##110度【解析】【分析】由三角形的内角和可求得∠BAC=60°,再由角平分线的定义得∠BAD=30°,利用三角形的外角性质即可求∠ADC的度数.【详解】解:∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=110°.故答案为:110°.【考点】本题主要考查三角形的外角性质,三角形的内角和定理,角平分线的定义,解答的关键是对相应的知识的掌握.三、解答题1、见解析【解析】【分析】根据平行线的性质证(SAS)即可求证;【详解】证明:∵,∴.∴.∵,∴.在和中∵∴(SAS).∴∴.【考点】本题主要考查三角形的全等证明、平行线的性质,掌握相关知识并灵活应用是解题的关键.2、平行【解析】【分析】由邻补角关系得出∠BPQ=115°,得出∠BPQ=∠BNG,由同位角相等即可得出结论.【详解】平行,因为,所以,所以根据“同位角相等,两直线平行”可得.【考点】本题考查了平行线的判定方法、邻补角关系;熟记同位角相等,两直线平行,证出∠BPQ=∠BNG是解决问题的关键.3、(1)平行;(2)115°.【解析】【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF∥CD;(2)由EF∥CD,根据平行线的性质得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根据内错角相等,两直线平行得到DG∥BC,所以∠ACB=∠3=115°.【详解】解:(1)CD与EF平行.理由如下:CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴EF∥CD(2)如图:EF∥CD,∴∠2=∠BCD又∠1=∠2,∴∠1=∠BCD∴DG∥BC,∴∠ACB=∠3=115°.【考点】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.4、见解析【解析】【分析】由与平行,利用两直角平行同位角相等得到一对角相等,再由为角平分线,得到一对角相等,再根据已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【详解】解:∵AB//CD,,平分,,,,∴AD//BC.【考点】本题考查了平行线的判定和性质,准确识图,灵活运用相关知识是解题的关键.5、102°【解析】【分析】由三角形内角和可得∠BAC=80°,然后由角平分线的定义可得,然后再根据三角形内角和可求解.【详解】解:在中,(三角形内角和定理).∵,(已知),∴(等式的性质).∵AD平分(已知),∴(角平分线的定义).在中,(三角形内角和定理).∵(已知),(已证),∴(等式的性质).【考点】本题主要考查角平分线的定义及三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论