解析卷-冀教版8年级下册期末试题(黄金题型)附答案详解_第1页
解析卷-冀教版8年级下册期末试题(黄金题型)附答案详解_第2页
解析卷-冀教版8年级下册期末试题(黄金题型)附答案详解_第3页
解析卷-冀教版8年级下册期末试题(黄金题型)附答案详解_第4页
解析卷-冀教版8年级下册期末试题(黄金题型)附答案详解_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版8年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、在平面直角坐标系中,所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、如图,在中,,于点D,F在BC上且,连接AF,E为AF的中点,连接DE,则DE的长为()A.1 B.2 C.3 D.43、如图,将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形.此时点A的对应点恰好落在对角线AC的中点处.若AB=3,则点B与点之间的距离为()A.3 B.6 C. D.4、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为()A.(2,2) B.(,) C.(,) D.(,)5、如图,在平面直角坐标系中xOy中,已知点A的坐标是(0,2),以OA为边在右侧作等边三角形OAA1,过点A1作x轴的垂线,垂足为点O1,以O1A1为边在右侧作等边三角形O1A1A2,再过点A2作x轴的垂线,垂足为点O2,以O2A2为边在右侧作等边三角形O2A2A3,……,按此规律继续作下去,得到等边三角形O2020A2020A2021,则点A2023的纵坐标为()A.()2021 B.()2022 C.()2023 D.()20246、已知一次函数,其中y的值随x值的增大而减小,若点A在该函数图象上,则点A的坐标可能是()A. B. C. D.7、如图是象棋棋盘的一部分,如果用(1,-2)表示帅的位置,那么点(-2,1)上的棋子是()A.相 B.马 C.炮 D.兵第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、点(2,-3)关于x轴的对称点的坐标是______.2、如图,在平面直角坐标系xOy中,菱形ABCD的顶点A,D分别在y轴的正半轴和负半轴上,顶点B在x轴的负半轴上,若OA=3OD,S菱形ABCD=16,则点C的坐标为______.3、已知点,则点到轴的距离为______,到轴的距离为______.4、如图,在矩形ABCD中,,,E、F分别是边AB、BC上的动点,且,M为EF中点,P是边AD上的一个动点,则的最小值是______.5、如图,在△ABC中,D,E分别是边AB,AC的中点,如果BC=7,那么DE=____.6、正比例函数图像经过点(1,-1),那么k=__________.7、已知一个多边形的内角和为,则这个多边形是________边形.8、已知直角坐标平面内的两点分别为A(2,﹣3)、B(5,6),那么A、B两点的距离等于______.三、解答题(7小题,每小题10分,共计70分)1、如图,平行四边形ABCD中,∠ADB=90°.(1)求作:AB的垂直平分线MN,交AB于点M,交BD延长线于点N(要求:尺规作图,保留作图痕迹,不写作法,不下结论)(2)在(1)的条件下,设直线MN交AD于E,且∠C=22.5°,求证:NE=AB.2、如图,已知矩形ABCD(AB<AD).E是BC上的点,AE=AD.(1)在线段CD上作一点F,连接EF,使得∠EFC=∠BEA(请用直尺和圆规作图,保留作图痕迹);(2)在(1)作出的图形中,若AB=4,AD=5,求DF的值.3、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.4、-辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km;两车相遇后休息了24分钟,再同时继续行驶,设两车之间的距离为y(km),货车行驶时间为x(h),请结合图像信息解答下列问题:(1)货车的速度为______km/h,轿车的速度为______km/h;(2)求y与x之间的函数关系式(写出x的取值范围),并把函数图像画完整;(3)货车出发______h,与轿车相距30km.5、如图,在△ABC中,∠ACB=90°,AC=BC,BC与y轴交于D点,点C的坐标为(-2,0),点A的坐标为(-6,3),求点D的坐标.6、如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交于点E.AB=6cm,BC=8cm.(1)求证AE=EC;(2)求阴影部分的面积.7、在平面直角坐标系中,点O为坐标原点,点A(﹣2,2)(﹣3,﹣2)的位置如图所示.(1)作出线段AB关于y轴对称的线段A′B′,并写出点A、B的对称点A′、B′的坐标;(2)连接AA′和BB′,请在图中画一条线段,将图中的四边形AA′B′B分成两个图形,一个是轴对称图形,另一个是中心对称图形,并且线段的一个端点为四边形的顶点(每个小正方形的顶点均为格点).-参考答案-一、单选题1、D【解析】【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵点的横坐标3>0,纵坐标-4<0,∴点P(3,-4)在第四象限.故选:D.【点睛】本题考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、B【解析】【分析】先求出,再根据等腰三角形的三线合一可得点是的中点,然后根据三角形中位线定理即可得.【详解】解:,,,(等腰三角形的三线合一),即点是的中点,为的中点,是的中位线,,故选:B.【点睛】本题考查了等腰三角形的三线合一、三角形中位线定理,熟练掌握等腰三角形的三线合一是解题关键.3、B【解析】【分析】连接,由矩形的性质得出∠ABC=90°,AC=BD,由旋转的性质得出,证明是等边三角形,由等边三角形的性质得出,由直角三角形的性质求出AC的长,由矩形的性质可得出答案.【详解】解:连接,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,∵点是AC的中点,∴,∵将矩形ABCD绕点B按顺时针方向旋转一定角度得到矩形,∴∴,∴是等边三角形,∴∠BAA'=60°,∴∠ACB=30°,∵AB=3,∴AC=2AB=6,∴.即点B与点之间的距离为6.故选:B.【点睛】本题考查了旋转的性质,矩形的性质,直角三角形的性质,等边三角形的判定和性质,求出AC的长是解本题的关键.4、C【解析】【分析】先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.【详解】∵∠OBA=90°,A(4,4),且,点D为OB的中点,∴点D(2,0),AC=1,BC=3,点C(4,3),设直线AO的解析式为y=kx,∴4=4k,解得k=1,∴直线AO的解析式为y=x,过点D作DE⊥AO,交y轴于点E,交AO于点F,∵∠OBA=90°,A(4,4),∴∠AOE=∠AOB=45°,∴∠OED=∠ODE=45°,OE=OD,∴DF=FE,∴点E是点D关于直线AO的对称点,∴点E(0,2),连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,设CE的解析式为y=mx+n,∴,解得,∴直线CE的解析式为y=x+2,∴y=1解得,∴使四边形PDBC周长最小的点P的坐标为(,),故选C.【点睛】本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.5、B【解析】【分析】根据30°角所对的直角边等于斜边的一半得出O1A1=OA1=1,O2A2=O1A2=()1,O3A3=O2A3=()2,即点A1的纵坐标为1;点A2的纵坐标为(),点A3的纵坐标为()2,以此类推,从中得出规律,即可求出答案.【详解】解:∵三角形OAA1是等边三角形,∴OA1=OA=2,∠AOA1=60°,∴∠O1OA1=30°.在直角△O1OA1中,∵∠OO1A1=90°,∠O1OA1=30°,∴O1A1=OA1=1,即点A1的纵坐标为1,同理,O2A2=O1A2=()1,O3A3=O2A3=()2,即点A2的纵坐标为()1,点A3的纵坐标为()2,…∴点A2023的纵坐标为()2022.故选:B.【点睛】此题考查了规律型:点的坐标,等边三角形的性质,解答此题的关键是通过认真分析,根据30°角所对的直角边等于斜边的一半,从中发现规律.6、D【解析】【分析】先判断再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.【详解】解:一次函数,其中y的值随x值的增大而减小,当时,则解得,故A不符合题意,当时,则解得故B不符合题意;当时,则解得故C不符合题意;当时,则解得故D符合题意;故选D【点睛】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.7、C【解析】【分析】根据帅的位置,建立如图坐标系,并找出坐标对应的位置即可.【详解】解:如图,由(1,-2)表示帅的位置,建立平面直角坐标系,帅的位置向上2个单位,向左1个单位为坐标原点,故由图可知(-2,1)上的棋子是炮的位置;故选C.【点睛】本题考查了直角坐标系上点的位置的应用.解题的关键在于正确的建立平面直角坐标系.二、填空题1、(2,3)【解析】【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【详解】解:点(2,−3)关于x轴的对称点的坐标是(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.2、(-2,-8)【解析】【分析】由菱形的性质可得出,即,,再根据勾股定理可求出OB的长度.设,则,列等式,求出,则答案可解.【详解】,四边形ABCD为菱形,,,即,,,.设则,,即,,解得(舍去).在轴上,,即轴,则轴,.【点睛】本题考查了菱形的性质及勾股定理,根据菱形的性质结合勾股定理求出、、的长是解题的关键.3、23【解析】【分析】点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值,据此即可得答案.【详解】∵点的坐标为,∴点到轴的距离为,到轴的距离为.故答案为:2;3【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.4、11【解析】【分析】作点C关于AD的对称点G,连接PG、GD、BM、GB,则当点P、M在线段BG上时,GP+PM+BM最小,从而CP+PM最小,在Rt△BCG中由勾股定理即可求得BG的长,从而求得最小值.【详解】如图,作点C关于AD的对称点G,连接PG、GD、BM、GB由对称的性质得:PC=PG,GD=CD∵GP+PM+BM≥BG∴CP+PM=GP+PM≥BG-BM则当点P、M在线段BG上时,CP+PM最小,且最小值为线段BG-BM∵四边形ABCD是矩形∴CD=AB=6,∠BCD=∠ABC=90°∴CG=2CD=12∵M为线段EF的中点,且EF=4∴在Rt△BCG中,由勾股定理得:∴GM=BG-BM=13-2=11即CP+PM的最小值为11.【点睛】本题是求两条线段和的最小值问题,考查了矩形性质,折叠的性质,直角三角形斜边上中线的性质,两点间线段最短,勾股定理等知识,有一定的综合性,关键是作点C关于AD的对称点及连接BM,GP+PM+BM的最小值转化为线段CP+PM的最小值.5、3.5##72【解析】【分析】根据DE是△ABC的中位线,计算求解即可.【详解】解:∵D,E分别是边AB,AC的中点∴DE是△ABC的中位线∴DEBC3.5故答案为:3.5.【点睛】本题考查了中位线.解题的关键在于正确的求值.6、-2【解析】【分析】由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k+1,即可得出k值.【详解】解:∵正比例函数的图象经过点(1,-1),∴-1=k+1,∴k=-2.故答案为:-2.【点睛】本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx是解题的关键.7、八##8【解析】【分析】n边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:根据n边形的内角和公式,得(n-2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:八.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.8、【解析】【分析】根据两点,利用勾股定理进行求解.【详解】解:在平面直角坐标系中描出、,分别过作平行于的线交于点,如图:的横坐标与的横坐标相同,的纵坐标与的纵坐标相同,,,,,故答案为:.【点睛】本题考查的是勾股定理,坐标与图形性质,解题的关键是掌握如果直角三角形的两条直角边长分别是,,斜边长为,那么.三、解答题1、(1)见解析(2)见解析【解析】【分析】(1)根据题意作AB的垂直平分线MN,交AB于点M,交BD延长线于点N(2)连接,根据平行四边形的性质求得,进而根据垂直平分线的性质以及导角可求得是等腰直角三角形,进而证明即可得证NE=AB.(1)如图,AB的垂直平分线MN,交AB于点M,交BD延长线于点N(2)如图,连接四边形是平行四边形,,则是的垂直平分线又在与中,【点睛】本题考查了作垂直平分线,平行四边形的性质,垂直平分线的性质,等边对等角,三角形全等的性质与判定,掌握以上知识是解题的关键.2、(1)见解析(2)【解析】【分析】(1)作∠DAE的角平分线,与DC的交点即为所求,理由:可先证明△AEF≌△ADF,可得∠AEF=∠D=90°,从而得到∠DAE+∠DFE=180°,进而得到∠EFC=∠DAE,再由AD∥BC,即可求解;(2)根据矩形的性质可得∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,从而得到BE=3,进而得到EC=2,然后在中,由勾股定理,即可求解.(1)解:如图,作∠DAE的角平分线,与DC的交点即为所求.∵AE=AD,∠EAF=∠DAF,AF=AF,∴△AEF≌△ADF,∴∠AEF=∠D=90°,∴∠DAE+∠DFE=180°,∵∠EFC+∠DFE=180°,∴∠EFC=∠DAE,∵在矩形ABCD中,AD∥BC,∴∠BEA=∠DAE,∴∠EFC=∠BEA;(2)解:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,AD=BC=5,AB=CD=4,∵AE=AD=5,∴BE===3,∴EC=BC﹣BE=5﹣3=2,由(1)得:△AEF≌△ADF,∴,在中,,∴,∴.【点睛】本题主要考查了矩形的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握矩形的性质,全等三角形的判定和性质,勾股定理是解题的关键.3、20条【解析】【分析】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.【详解】解:设此正多边形为正n边形.由题意得:,解得n=8,∴此正多边形所有的对角线条数为:=20.答:这个正多边形的所有对角线有20条.【点睛】此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..4、(1)80,100(2)当时,;当时,;当时,;当时,,图见解析(3)或【解析】【分析】(1)结合图象可得经过两个小时,两车相遇,设货车的速度为,则轿车的速度为,根据题意列出方程求解即可得;(2)分别求出各个时间段的函数解析式,然后再函数图象中作出相应直线即可;(3)将代入(2)中各个时间段的函数解析式,求解,同时考虑解是否在相应时间段内即可.(1)解:由图象可得:经过两个小时,两车相遇,设货车的速度为,则轿车的速度为,∴,解得:,,∴货车的速度为,则轿车的速度为,故答案为:80;100;(2)当时,图象经过,点,设直线解析式为:,代入得:,解得:,∴当时,;分钟小时,∵两车相遇后休息了24分钟,∴当时,;当时,轿车距离甲地的路程为:,货车距离乙地的路程为:,轿车到达甲地还需要:,货车到达乙地还需要:,∴当时,;当时,;当时,;当时,;当时,;∴函数图象分别经过点,,,作图如下:(3)①当时,令可得:,解得:;②当时,令可得:,解得:;③当时,令可得:;解得::,不符合题意,舍去;综上可得:货车出发或,与轿车相距30km,故答案为:或.【点睛】题目主要考查一元一次方程的应用,一次函数的应用,利用待定系数法确定一次函数解析式,作函数图象等,理解题意,熟练掌握运用一次函数的基本性质是解题关键.5、(0,83【解析】【分析】过A和B分别作AF⊥x轴于F,BE⊥x轴于E,可证得△AFC≌△CEB,从而得到FC=BE,AF=CE,再由点C的坐标为(-2,0),点A的坐标为(-6,3),可得OC=2,AF=CE=3,OF=6,从而得到B点的坐标是(1,4),再求出直线BC的解析式,即可求解.【详解】解:过A和B分别作AF⊥x轴于F,BE⊥x轴于E,∵∠ACB=90°,∴∠ACF+∠BCE=90°,∵AF⊥x轴,BE⊥x轴,∴∠AFC=∠CEB=90°,∴∠ACF+∠CAF=90°,∴∠CAF=∠BCE,在△AFC和△CEB中,∠AFC=∠CEB=90∴△AFC≌△CEB(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论