基础强化辽宁省大石桥市中考数学真题分类(平行线的证明)汇编章节测评试题(解析版)_第1页
基础强化辽宁省大石桥市中考数学真题分类(平行线的证明)汇编章节测评试题(解析版)_第2页
基础强化辽宁省大石桥市中考数学真题分类(平行线的证明)汇编章节测评试题(解析版)_第3页
基础强化辽宁省大石桥市中考数学真题分类(平行线的证明)汇编章节测评试题(解析版)_第4页
基础强化辽宁省大石桥市中考数学真题分类(平行线的证明)汇编章节测评试题(解析版)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省大石桥市中考数学真题分类(平行线的证明)汇编章节测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°2、若△ABC三个角的大小满足条件∠A:∠B:∠C=1:3:4,则∠C的大小为(

)A.22.5° B.45° C.67.5° D.90°3、如图,,若,则的度数是(

)A.80° B.70° C.65° D.60°4、如图,在△ABC中,∠A=90°,BE,CD分别平分∠ABC和∠ACB,且相交于F,,于点G,则下列结论①∠CEG=2∠DCA;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠A;⑤∠DFE=135°,其中正确的结论是(

)A.①②③ B.①③④ C.①③④⑤ D.①②③④5、已知,在中,,点在线段的延长线上,过点作,垂足为,若,则的度数为(

)A.76° B.65° C.56° D.54°6、如图,把△ABC沿EF对折,折叠后的图形如图所示,,,则的度数为(

)A. B. C. D.7、在△ABC中,∠A-∠C=∠B,那么△ABC是()A.等边三角形 B.锐角三角形 C.钝角三角形 D.直角三角形8、如图,下列推理正确的是(

)A.∵,∴ B.∵,∴C.∵,∴ D.∵,∴第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、用一组整数a,b,c的值说明命题“若a>b>c,则a+b>c”是错误的,这组值可以是a=__,b=__,c=__.2、已知三条不同的直线a、b、c在同一平面内,下列四个命题:①如果ab,a⊥c,那么b⊥c;②如果ba,ca,那么bc;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么bc.其中是假命题的是__________.(填序号)3、“两条直线被第三条直线所截,内错角相等”是___命题.(填“真”或“假”)4、两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果___________,那么这两条直线平行.这个判定方法可简述为:_________,两直线平行.5、如图,直线AB、CD相交于点O,∠BOC=α,点F在直线AB上且在点O的右侧,点E在射线OC上,连接EF,直线EM、FN交于点G.若∠MEF=n∠CEF,∠NFE=(1﹣2n)∠AFE,且∠EGF的度数与∠AFE的度数无关,则∠EGF=__.(用含有α的代数式表示)6、将△ABC沿着DE翻折,使点A落到点A′处,A′D、A′E分别与BC交于M、N两点,且DEBC.已知∠A′NM=27°,则∠NEC=_____.7、一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=_____度.三、解答题(7小题,每小题10分,共计70分)1、如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.2、如图,AD是△ABE的角平分线,过点B作BC⊥AB交AD的延长线于点C,点F在AB上,连接EF交AD于点G.(1)若2∠1+∠EAB=180°,求证:EF∥BC;(2)若∠C=72°,∠AEB=78°,求∠CBE的度数.3、如图,在三角形ABC中CD为的平分线,交AB于点D,,.(1)求证:;(2)如果,,试证明.4、在△ABC中,∠ADB=100°,∠C=80°,∠BAD=∠DAC,BE平分∠ABC,求∠BED的度数.

5、如图,在中,.(1)如图①所示,直线过点,于点,于点,且.求证:.(2)如图②所示,直线过点,交于点,交于点,且,则是否成立?请说明理由.6、如图所示,已知BO、CO分别是∠ABC与∠ACB的平分线,DE过O点且与BC平行.(1)若∠ABC=52°,∠ACB=60°,求∠BOC的大小;(2)若∠A=60°,求∠BOC的大小;(3)直接写出∠A与∠BOC的关系是∠BOC=.(用∠A表示出来)7、如图,△ABC中,E是AB上一点,过D作DEBC交AB于E点,F是BC上一点,连接DF.若∠AED=∠1.(1)求证:ABDF.(2)若∠1=52°,DF平分∠CDE,求∠C的度数.-参考答案-一、单选题1、D【解析】【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意;∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;(同位角相等,两直线平行)故C不符合题意;∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定故D符合题意;故选D【考点】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.2、D【解析】【分析】先用∠A表示出∠B、∠C,再根据三角形的内角和定理求出∠A、∠C得结论.【详解】解:∵∠A:∠B:∠C=1:3:4,∴∠B=3∠A,∠C=4∠A.∵∠A+∠B+∠C=180,∴∠A+3∠A+4∠A=180.∴∠A=22.5.∴∠C=4∠A=4×22.5=90.故选:D.【考点】本题考查了三角形的内角和定理,掌握“三角形的内角和等于180”是解决本题的关键.3、B【解析】【分析】由根据全等三角形的性质可得,再利用三角形内角和进行求解即可.【详解】,,,,,,故选:B.【考点】本题考查了全等三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键.4、C【解析】【分析】根据平行线的性质与角平分线的定义即可判断①;只需要证明∠ADC+∠ACD=90°,∠GCD+∠BCD=90°,即可判断③;根据角平分线的定义和三角形内角和定理先推出,即可判断④⑤;根据现有条件无法推出②.【详解】解:∵CD平分∠ACB,∴∠ACB=2∠DCA,∠ACD=∠BCD∵,∴∠CEG=∠ACB=2∠DCA,故①正确;∵∠A=90°,CG⊥EG,,∴∠ADC+∠ACD=90°,CG⊥BC,即∠BCG=90°,∴∠GCD+∠BCD=90°,又∵∠BCD=∠ACD,∴∠ADC=∠GDC,故③正确;∵∠A=90°,∴∠ABC+∠ACB=90°,∵BE,CD分别平分∠ABC,∠ACB,∴,∴,∴∠DFB=180°-∠BFC=45°,∴,故④正确;∵∠BFC=135°,∴∠DFE=∠BFC=135°,故⑤正确;根据现有条件,无法推出CA平分∠BCG,故②错误;故选C.【考点】本题主要考查了平行线的性质,角平分线的定义,三角形内角和定理,熟知平行线的性质,角平分线的定义是解题的关键.5、D【解析】【分析】根据三角形的内角和是,即可求解.【详解】,,在中,,,在中,,,故选:D.【考点】本题考查了垂直的性质和三角形的内角和,熟练掌握相关的性质是解题的关键.6、B【解析】【分析】由三角形的内角和,得,由邻补角的性质得,根据折叠的性质得,即,所以,.【详解】解:∵,∴,∴,由折叠的性质可得:,∴,∵,∴,即.故选B.【考点】本题考查了三角形的内角和定理、邻补角的性质、折叠的性质,熟悉掌握三角形的内角和为,互为邻补角的两个角之和为以及折叠的性质是本题的解题关键.7、D【解析】【分析】由于∠A-∠C=∠B,再结合∠A+∠B+∠C=180°,易求∠A,进而可判断三角形的形状.【详解】∵∠A-∠C=∠B,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故选D.【考点】本题考查了三角形内角和定理,求出∠A的度数是解题的关键.8、B【解析】【分析】根据平行线的判定判断即可.【详解】解:A、由∠2=∠4不能推出AD∥BC,故本选项错误;B、∵∠1=∠3,∴AD∥BC,故本选项正确;C、由∠4+∠D=180°不能推出AD∥BC,故本选项错误;D、由∠4+∠B=180°不能推出AD∥BC,故本选项错误;故选:B.【考点】本题考查了平行线的判定的应用,注意:同旁内角互补,两直线平行,内错角相等,两直线平行.二、填空题1、

-2

-3

-4【解析】【分析】根据题意选择a、b、c的值,即可得出答案,答案不唯一.【详解】解:当a=﹣2,b=﹣3,c=﹣4时,﹣2>﹣3>﹣4,则(﹣2)+(﹣3)<(﹣4),∴命题若a>b>c,则a+b>c”是错误的;故答案为:﹣2,﹣3,﹣4.【考点】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2、③【解析】【分析】根据平行线的性质,判定及基本事实进行判断.【详解】①如果a∥b,a⊥c,那么b⊥c,是真命题;②如果b∥a,c∥a,那么b∥c,是真命题;③如果b⊥a,c⊥a,那么b∥c,则原命题是假命题;④如果b⊥a,c⊥a,那么b∥c,是真命题.故答案为:③.【考点】本题考查真假命题的判断,熟练掌握平行线的基本事实及判定是解题的关键.3、假【解析】【分析】由正确的题设得出正确的结论是真命题,由正确的题设不能得出正确结论是假命题,判定此命题的正误即可得到答案.【详解】解:∵当两条平行线被第三条直线所截,内错角相等,∴两条直线被第三条直线所截,内错角有相等或不相等两种情况∴原命题错误,是假命题,故答案为假.【考点】本题考查了判断命题的真假的知识,解题的关键是根据命题作出正确的判断,必要时可以举出反例.4、

同位角相等(答案不唯一)

同位角相等(答案不唯一)【解析】【分析】根据平行线的判定定理解答即可.【详解】两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.这个判定方法可简述为:同位角相等,两直线平行.故答案为:同位角相等,同位角相等.【考点】本题主要考查平行线的判定定理,属于基础题,熟练掌握平行线的判定定理是解题关键.5、α##α3【解析】【分析】利用三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角和,以及三角形内角和定理求解.【详解】解:∵∠CEF=∠AFE+∠BOC,∠BOC=α,∴∠CEF=α+∠AFE,∵∠MEF=n∠CEF,∴∠MEF=n(α+∠AFE),∵∠EGF=∠MEF﹣∠NFE,∴∠EGF=n(α+∠AFE)﹣(1﹣2n)∠AFE=nα+(3n﹣1)∠AFE,∵∠EGF的度数与∠AFE的度数无关,∴3n﹣1=0,即n=,∴∠EGF=α;故答案为:α.【考点】此题考查了三角形外角的性质及角度计算,解题的关键是理解∠EGF的度数与∠AFE的度数无关的含义.6、126°【解析】【分析】利用平行线的性质求出∠DEN=27°,再利用翻折不变性得到∠AED=∠DEN=27°,再根据平角的性质即可解决问题.【详解】解:∵DE∥BC,∴∠DEN=∠A′NM=27°,由翻折不变性可知:∠AED=∠DEN=27°,∴∠NEC=180°﹣2×27°=126°,故答案为126°.【考点】本题考查翻折变换,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7、120【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=150°,求得答案.【详解】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.【考点】此题考查了平行线的性质,解题的关键是注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题1、(1)证明见解析;(2)105°.【解析】【详解】(1)根据平行线的性质得出∠D+∠BHD=180°,等量代换得出∠B=∠DHB,根据平行线的判定得出即可;(2)根据平行线的性质求出∠AGB=∠AMD=75°,再根据邻补角的定义即可求出∠AGC的度数.(1)证明:∵AB∥DF,

∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠DHB,∴DE∥BC.(2)解:∵DE∥BC,∠AMD=75°,∴∠AGB=∠AMD=75°,∴∠AGC=180°﹣∠AGB=180°﹣75°=105°.【考点】本题涉及的知识点是平行线的判定及性质.熟练掌握平行线的性质及判定并能准确识图是解题的关键.2、(1)见解析;(2)24°【解析】【分析】(1)先根据AD是△ABE的角平分线得出∠EAB=2∠GAF,,再由2∠1+∠EAB=180°得出∠AGF+∠GAF=90°,进而可得出结论;(2)根据三角形内角和定理及外角的性质求解即可.(1)证明:∵AD是△ABE的角平分线,∴∠EAB=2∠GAF,∵2∠1+∠EAB=180°,∴2∠1+2∠GAF=180°,∵∠1=∠AGF,∴2∠AGF+2∠GAF=180°,∴∠AGF+∠GAF=90°,∴∠AFG=90°,∵BC⊥AB,∴∠AFG=∠ABC==90°,∴EF∥BC;(2)解:∵∠C=72°,∠ABC==90°,∴∠CAB==90°-∠C==90°-72°==18°,∴∠EAB=2∠CAB=36°,∵∠AEB=78°,∴∠ABE==180°-(∠AEB+∠EAB)==90°-(78°+36°)==66°,∴∠CBE=90°-∠ABE==90°-66°==24°.【考点】此题考查了平行线的判定及三角形的内外角性质,熟记平行线的判定定理是解题的关键.3、(1)见解析(2)见解析【解析】【分析】(1)先根据角平分线的定义求得∠ACB,进而说明∠ACB=∠3,然后运用同位角相等、两直线平行即可证明;(2)先根据两直线平行、内错角相等可得,进而得到∠BCD=∠2可得EF//DC,运用平行线的性质可得∠BFE=∠BDC,最后结合即可证明.(1)证明:∵CD平分,(已知)∴(角平分线的定义)又∵(已知)∴(等量代换)∴.(2)证明:由(1)知(已证)∴(两直线平行,内错角相等)又∵(已知)∴(等量代换)∴(同位角相等,两直线平行)∴(两直线平行,同位角相等)又∵(已知)∴(垂直的定义)∴(等量代换)∴(垂直的定义).【考点】本题主要考查了平行线的判定与性质、角平分线的定义等知识点,灵活运用平行线线的判定与性质成为解答本题的关键.4、50°【解析】【分析】由题意根据三角形外角的性质可得∠DAC=20°,然后再计算出∠EBA=30°,在根据三角形外角的性质可得∠BED的度数.【详解】解:∵∠ADB=100°,∠C=80°,

∴∠DAC=20°,∵∠BAD=∠DAC,∴∠BAD=20°,∴∠DBA=180°﹣100°﹣20°=60°,∵BE平分∠ABC,∴∠EBA=30°,∴∠BED=30°+20°=50°.【考点】本题主要考查三角形内角和以及外角的性质,解题的关键是掌握三角形的外角等于与它不相邻的两个内角的和以及三角形内角和为180°.5、(1)见解析;(2)仍然成立,理由见解析【解析】【分析】(1)首先根据同角的余角相等得到,然后证明,然后根据全等三角形对应边相等得到,,然后通过线段之间的转化即可证明;(2)首先根据三角形内角和定理得到,然后证明,根据全等三角形对应边相等得到,最后通过线段之间的转化即可证明.【详解】证明:(1)∵,,∴,∴,∵,∴,∴,在和中,,∴,∴,,∵,∴;(2)仍然成立,理由如下:∵,∵,∴,在和中,,∴,∴,,∵,∴.【考点】此题考查了全等三角形的性质和判定,同角的与相等,三角形内角和定理等知识,解题的关键是根据同角的余角相等或三角形内角和定理得到.6、(1)124°(2)120°(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论