版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《轴对称》章节测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、自新冠肺炎疫情发生以来,全国人民共同抗疫.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A. B.C. D.2、永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育.下列安全图标不是轴对称的是(
)A. B. C. D.3、将三角形纸片()按如图所示的方式折叠,使点C落在边上的点D,折痕为.已知,若以点B、D、F为顶点的三角形与相似,那么的长度是(
)A.2 B.或2 C. D.或24、如图,在的正方形网格中有两个格点A、B,连接,在网格中再找一个格点C,使得是等腰直角三角形,满足条件的格点C的个数是(
)A.2 B.3 C.4 D.55、给出下列命题,正确的有(
)个①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、已知,点P为内一点,点A为OM上一点,点B为ON上一点,当的周长取最小值时,的度数为_______________.2、如图,点D是的平分线OC上一点,过点D作交射线OA于点E,则线段DE与OE的数量关系为:DE______OE(填“>”或“=”或“<”).3、如图,在中,,,以点为圆心,以小于的长为半径作弧,分别交于点,交于点,再分别以点,为圆心,大于的长为半径作弧,两弧交于点,作射线交于点,连接,则______.4、如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DAE的度数是
_____.5、在平面直角坐标系中,点与点关于轴对称,则的值是_____.三、解答题(5小题,每小题10分,共计50分)1、已知的三边长分别为,,.(1)若,,求的取值范围;(2)在(1)的条件下,若为奇数,试判断的形状,并说明理由.2、如图,在四边形中,,,分别是,上的点,连接,,.(1)如图①,,,.求证:;
(2)如图②,,当周长最小时,求的度数;(3)如图③,若四边形为正方形,点、分别在边、上,且,若,,请求出线段的长度.3、如图,在正方形网格上有一个.(1)画出关于直线的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求的面积.4、如图,在中,,.(1)在线段上找到一个点,使得.(尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,连接,求证:是等边三角形.5、在中,,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED.(1)如图1,当时,则_______°;(2)当时,①如图2,连接AD,判断的形状,并证明;②如图3,直线CF与ED交于点F,满足.P为直线CF上一动点.当的值最大时,用等式表示PE,PD与AB之间的数量关系为_______,并证明.-参考答案-一、单选题1、D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【详解】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意.故选:D.【考点】本题考查了轴对称图形,熟练掌握轴对称图形的定义是解题的关键.2、D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项符合题意.故选:D.【考点】本题考查了轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3、B【解析】【分析】分两种情况:若或若,再根据相似三角形的性质解题【详解】∵沿折叠后点C和点D重合,∴,设,则,以点B、D、F为顶点的三角形与相似,分两种情况:①若,则,即,解得;②若,则,即,解得.综上,的长为或2,故选:B.【考点】本题考查相似三角形的性质,是重要考点,掌握相关知识是解题关键.4、B【解析】【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.【详解】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有3个.故共有3个点,故选:B.【考点】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.5、B【解析】【详解】解:①等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;②等腰三角形两腰上的高相等,本选项正确;③等腰三角形最小边不一定底边,故本选项错误;④等边三角形的高、中线、角平分线都相等,本选项正确;⑤等腰三角形可以是钝角三角形,故本选项错误,故选B二、填空题1、80°【解析】【分析】如图,分别作P关于OM、ON的对称点,然后连接两个对称点即可得到A、B两点,由此即可得到△PAB的周长取最小值时的情况,并且求出∠APB度数.【详解】解:如图,分别作P关于OM、ON的对称点P1、P2,然后连接两个对称点即可得到A、B两点,∴△PAB即为所求的三角形,根据对称性知道:∠APO=∠AP1O,∠BPO=∠BP2O,还根据对称性知道:∠P1OP2=2∠MON,OP1=OP2,而∠MON=50°,∴∠P1OP2=100°,∴∠AP1O=∠BP2O=40°,∴∠APB=2×40°=80°.故答案为80°.2、=【解析】【分析】首先由平行线的性质求得∠EDO=∠DOB,然后根据角平分线的定义求得∠EOD=∠DOB,最后根据等腰三角形的判定和性质即可判断.【详解】解:∵ED∥OB,∴∠EDO=∠DOB,∵D是∠AOB平分线OC上一点,∴∠EOD=∠DOB,∴∠EOD=∠EDO,∴DE=OE,故答案为:=.【考点】本题主要考查的是平行线的性质、角平分线的定义以及等角对等边,根据平行线的性质和角平分线的定义求得∠EOD=∠EDO是解题的关键.3、【解析】【分析】利用基本作图得到AG平分∠BAC,则可计算出∠BAG=∠CAG=∠B=30,所以AG=BG;根据直角形三角形30角所对直角边是斜边的一半,知AG=2CG,则BG=BC,然后根据三角形面积与(底)高的关系计算的值.【详解】解:由作法得,AG平分∠BAC∴∠BAG=∠CAG=30∵∠B=90-∠BAC=30∴∠B=∠BAG∴AG=BG在RtACG中,AG=2CG∴BG=2CG∴BG=BC∴=故答案为:.【考点】本题考查了作图-复杂作图,角平分线的性质,等腰三角形的性质,含30角的直角三角形三边的关系及三角形面积与底(高)的关系.解题的关键是熟悉基本几何图形的性质.4、35°【解析】【分析】由线段垂直平分线的性质和等腰三角形的性质求得∠BAD=30°,结合三角形内角和定理求出∠CAD,根据角平分线的定义即可求出∠DAE的度数.【详解】解:∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=∠B=30°,∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=180°-30°-50°=100°,∴∠CAD=∠BAC-∠BAD=100°-30°=70°,∵AE平分∠CAD,∴∠DAE=∠CAD=×70°=35°,故答案为:35°.【考点】本题考查作图-基本作图,三角形内角和定理等知识,解题的关键是读懂图象信息,熟练掌握线段垂直平分线和角平分线的作法.5、4【解析】【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,,,则a+b的值是:,故答案为.【考点】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.三、解答题1、(1)1<c<5;(2)△ABC为等腰三角形【解析】【分析】(1)根据三角形的三边关系定理可得3-2<c<3+2,再解不等式即可;(2)根据c的范围可直接得到答案.【详解】解:(1)根据三角形的三边关系定理可得3-2<c<3+2,即1<c<5;(2)∵第三边c为奇数,∴c=3,∵a=2,b=3,∴b=c,∴△ABC为等腰三角形.【考点】此题主要考查了三角形的三边关系及等腰三角形的判断,关键是掌握三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边.2、(1)见解析;(2);(3).【解析】【分析】(1)延长到点G,使,连接,首先证明,则有,,然后利用角度之间的关系得出,进而可证明,则,则结论可证;(2)分别作点A关于和的对称点,,连接,交于点,交于点,根据轴对称的性质有,,当点、、、在同一条直线上时,即为周长的最小值,然后利用求解即可;(3)旋转至的位置,首先证明,则有,最后利用求解即可.【详解】(1)证明:如解图①,延长到点,使,连接,在和中,.,,,,.,在和中,.,;(2)解:如解图,分别作点A关于和的对称点,,连接,交于点,交于点.由对称的性质可得,,此时的周长为.当点、、、在同一条直线上时,即为周长的最小值.,.,,;(3)解:如解图,旋转至的位置,,,.在和中,...【考点】本题主要考查全等三角形的判定及性质,轴对称的性质,掌握全等三角形的判定及性质是解题的关键.3、(1)见解析;(2)8.5.【解析】【分析】(1)先利用网格确定△ABC关于直线MN对称的点,再顺次连接各点即可得到△ABC关于直线MN的对称图形;(2)利用矩形面积减去周围多余三角形面积即可.【详解】解:(1)如图所示:△DEF即为所求;(2)△ABC的面积:4×5-×4×1-×5×3-×4×1=20-2-7.5-2=8.5.【考点】此题主要考查了作图--轴对称变换,关键是确定组成图形的关键点的对称点位置.4、(1)见解析;(2)见解析【解析】【分析】(1)作线段AC的垂直平分线即可;(2)根据线段垂直平分线的性质可得DA=DC,根据等边对等角可得∠CAD=∠C,进而可得∠ADB=∠B=∠DAB=60°,然后可得答案.(1)解:如图所示:(2)∵∠BAC=90°,∠C=30°∴∠B=60°,又∵点D在AC的垂直平分线上,∴DA=DC,∴∠CAD=∠C=30°,∴∠DAB=60°,∴∠ADB=∠B=∠DAB=60°,即△ABD是等边三角形.【考点】此题主要考查了基本作图,以及线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.5、(1)80;(2)是等边三角形;(3).【解析】【分析】(1)根据垂直平分线性质可知,再结合等腰三角形性质可得,,利用平角定义和四边形内角和定理可得,由此求解即可;(2)根据(1)的结论求出即可证明是等边三角形;(3)根据利用对称和三角形两边之差小于第三边,找到当的值最大时的P点位置,再证明对称点与AD两点构成三角形为等边三角形,利用旋转全等模型即可证明,从而可知,再根据30°直角三角形性质可知即可得出结论.【详解】解:(1)∵点E为线段AC,CD的垂直平分线的交点,∴,∴,,∴,∵,∴,∵,∴,∵在中,,,∴,∴,故答案为:.(2)①结论:是等边三角形.证明:∵在中,,,∴,由(1)得:,,∴是等边三角形.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老服务合同(机构版)-2025年养老设施租赁收费标准协议
- 2025年网络安全防护体系建设技术服务合同
- 2025年劳动合同试用期考核结果处理协议
- 2025年新劳动合同签订及履行协议书
- 餐饮培训知识付费课件
- 湖北省武汉市黄陂区七校联盟2026届九年级上学期10月月考历史试卷(含答案)
- 2026届湖南省岳阳市高三上学期教学质量监测(一)地理含答案
- 智能灌溉系统用于无公害蔬菜种植创新创业项目商业计划书
- 物业维修预约调度系统创新创业项目商业计划书
- 木材初级加工安全生产培训创新创业项目商业计划书
- 正大杯全国大学生市场调查与分析大赛(试题340道含答案)
- 大学物业管理知识培训课程课件
- 假体周围骨折课件
- 建筑工程施工安全与技术管理相关知识试卷
- 2025年高等教育工学类自考-02382管理信息系统历年参考题库含答案解析(5套典型题)
- 2025年人教版新教材数学三年级上册教学计划(含进度表)
- 医院移动护理系统
- 初中道德与法治名师讲座
- 急性胆源性胰腺炎护理查房
- 《血管内导管相关性血流感染预防与诊治指南(2025)》解读 4
- 法布里病护理查房
评论
0/150
提交评论