版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽合肥市庐江县二中7年级数学下册第一章整式的乘除专项测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、已知,m,n均为正整数,则的值为().A. B. C. D.2、下列计算正确的是()A. B. C. D.3、计算的结果是()A. B. C. D.14、下列计算正确的是()A.2a+3b=5ab B.x8÷x2=x6 C.(ab3)2=ab6 D.(x+2)2=x2+45、如果是完全平方式,那么的值是()A. B. C. D.6、下列计算中,结果正确的是()A. B. C. D.7、下列计算中,正确的是()A. B.C. D.8、某呼吸道病毒的变种,具有较强传播能力,市民都戴好口罩就能大大降低感染率,已知该病毒的直径大约0.0000023毫米,将数字0.0000023用科学计数法表示为()A. B. C. D.9、的值是().A. B. C. D.10、2020年,引发疫情的冠状病毒被命名为SARS-CoV-2的新型冠状病毒.形态结构冠状病毒粒子呈不规则形状,直径约0.00000022m,用科学计数法表示为()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、计算:________.2、若a+b=8,ab=-5,则=___________3、_______.4、若,,则的值为________.5、我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(n为非负整数)展开式的项数及各项系数的有关规律.例如:,它只有一项,系数为1;,它有两项,系数分别为1,1,系数和为2;,它有三项,系数分别为1,2,1,系数和为4;,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,展开式的系数和为_______.6、若,,则________.7、用科学记数法表示0.00000012为________.8、已知,则______.9、已知,则______.10、一种细胞的直径是0.0000705m,用科学记数法可表示为__________m.三、解答题(6小题,每小题10分,共计60分)1、化简:(x﹣2)2﹣x(x+4).2、计算:.3、计算:.4、(1)数学课堂上老师留了道数学题,如图1,用式子表示空白部分的面积.甲,乙,丙,丁4名同学表示的式子是:甲:乙:丙:丁:4名同学中正确的学生是______;(填“甲”,“乙”,“丙”,“丁”)(2)如图2,有一块长为米,宽为米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化,已知两条道路的宽分别为米和米,求绿地的面积(用含a,b的式子来表示)5、先化简,再求值:,其中,.6、(1)如图1,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分按照图中的线段分割成两个图形.请将分割成的这两个图形拼成一个常见的几何图形,要求画出两种不同的图形,并用图1剪拼前后的两个图形验证一个乘法公式.(2)如图2,某小区的花园起初被设计为边长为a米的正方形,后因道路的原因,设计修改为:南边往北平移x(x<a)米,而东边往东平移x米,问:①修改后的花园面积是多少?②在周长为定值4a的长方形中,什么时候其面积最大?并说明理由.-参考答案-一、单选题1、C【分析】根据幂的乘方和同底数幂的乘法运算法则进行计算即可得出结果.【详解】解:∵∴故选C【点睛】本题主要考查了幂的乘方和同底数幂的乘法,熟练掌握相关运算法则是解答本题的关键.2、C【分析】分别根据幂的乘方、同底数幂的乘法、同底数幂的除法、单项式乘以单项式法则逐项计算,即可求解.【详解】解:A.,故原选项计算错误,不合题意;B.,故原选项计算错误,不合题意;C.,故原选项计算正确,符合题意;D.,故原选项计算错误,不合题意.故选:C【点睛】本题考查了幂的乘方、同底数幂的乘法、同底数幂的除法、单项式乘以单项式运算,熟知运算法则并正确计算是解题关键.3、C【分析】由题意直接根据负整数指数幂的意义进行计算即可求出答案.【详解】解:.故选:C.【点睛】本题考查负整数指数幂的运算,解题的关键是正确理解负整数指数幂的意义.4、B【分析】由相关运算法则计算判断即可.【详解】2a和3b不是同类项,无法计算,与题意不符,故错误;x8÷x2=x6,与题意相符,故正确;(ab3)2=a2b6,与题意不符,故错误;(x+2)2=x2+2x+4,与题意不符,故错误.故选:B.【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.5、D【分析】先写出,进一步求出的值,即可求解.【详解】解:∵,且是完全平方式,∴;故选:D【点睛】本题主要考查了完全平方式,掌握满足完全平方式的情况只有和两种,两种情况的熟练应用是解题关键.6、C【分析】根据整式乘法的法则及幂的乘方法则、同底数幂除法法则依次判断.【详解】解:A、x2,故该项不符合题意,B、,故该项不符合题意,C、,故该项符合题意,D、,故该项不符合题意,故选:C.【点睛】此题考查了整式的计算法则,正确掌握整式乘法的法则及幂的乘方法则、同底数幂除法法则是解题的关键.7、D【分析】根据完全平方公式可判断A,根据同底数幂的乘法同底数幂相乘底数不变指数相加可判断B,根据同底数幂除法运算法则同底数幂相乘底数不变指数相减可判断C,根据积的乘方每个因式分别乘方与幂的乘方法则底数不变指数相乘可判断D.【详解】A.,故选项A不正确;B.,故选项B不正确;C.,故选项C不正确;D.,故选项D正确.故选:D.【点睛】本题考查整式中幂指数运算与乘法公式,掌握整式中幂指数运算与乘法公式是解题关键.8、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000023=2.3×10﹣6.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9、C【分析】同底数幂的乘法:底数不变,指数相加,根据法则直接计算即可.【详解】解:故选:C【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法法则”是解本题的关键.10、B【分析】科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:0.00000022=2.2×10-7.故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.二、填空题1、【分析】将变形为,利用完全平方公式进行求解.【详解】解:,,,,,,,故答案是:.【点睛】本题考查了完全平方公式的运用,解题的关键是掌握完全平方公式的运用.2、84【分析】根据完全平方公式的变形即可求解.【详解】∵a+b=8,ab=-5∴==64-4×(-5)=84故答案为:84.【点睛】此题主要考查代数式求值,解题的关键是熟知完全平方公式的变形.3、2【分析】直接利用求绝对值,零指数幂求解.【详解】解:,故答案是:2.【点睛】本题考查了零指数幂、求绝对值,解题的关键是掌握相应的运算法则.4、68【分析】利用完全平方公式,把化为求解即可.【详解】解:,,.故答案为:68.【点睛】本题主要考查了完全平方公式,解题的关键是熟记完全平方公式.5、【分析】由前4个等式可以得到一列有规律的数:再总结归纳出一般规律即可.【详解】解:,系数为1;,系数分别为1,1,系数和为2;,系数分别为1,2,1,系数和为4;,系数分别为1,3,3,1,系数和为8;…归纳可得:展开式的系数和为:故答案为:【点睛】本题考查的是数字规律的探究,掌握“从具体到一般的探究方法并总结规律”是解本题的关键.6、3【分析】由题意直接运用完全平方公式进行变形,进而整体代入即可得出答案.【详解】解:.故答案为:3.【点睛】本题考查已知式子求代数式的值和完全平方公式,熟练掌握是解题的关键.7、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000012=1.2×10-7.故答案为:1.2×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8、18【分析】由,整理得,即可求出.【详解】解:,,,,故答案是:18.【点睛】本题考查了完全平方公式,求代数式的值,解题的关键是掌握完全平方公式.9、1【分析】首先把81化为,进而可得,再解即可.【详解】解:,,,,故答案为:1.【点睛】本题考查有理数的乘方,同底数幂的乘法,解题的关键是理解有理数乘方和同底数幂相乘的运算法则.10、7.05×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000705=7.05×10﹣5;故答案为:7.05×10﹣5.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题1、4-8x.【分析】先根据完全平方公式,单项式乘多项式进行计算,再合并同类项即可.【详解】解:(x﹣2)2﹣x(x+4)=x2-4x+4-x2-4x=4-8x.【点睛】本题考查了整式的化简,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.2、【分析】先运用乘法公式进行计算,再合并同类项即可.【详解】解:,=,=,=.【点睛】本题考查了整式的乘法,解题关键是熟记乘法公式,准确进行计算.3、【分析】分别计算零次幂,负整数指数幂,同底数幂的除法运算,再合并即可.【详解】解:【点睛】本题考查的零次幂的运算,负整数指数幂的含义,同底数幂的除法,掌握以上基础运算是解本题的关键.4、(1)丙,丁;(2)【分析】(1)用长方形面积减去小路面积或通过平移把绿地拼成一个长方形,即可列出代数式;(2)类似(1)的方法列出代数式即可.【详解】解:(1)长方形的面积为:;两条小路的面积为:和,两条小路重合部分面积为:,故列式为;绿地拼在一起是长方形,两边分别为:,故列式为:;故答案为:丙,丁;(2)根据(1)的方法可求绿地的面积:,【点睛】本题考查了列代数式和整式的运算,解题关键是熟练运用整式运算法则进行计算.5、,【分析】先利用完全平方公式和单项式乘多项式的运算法则去括号,然后再合并同类项,求出化简结果,将字母的值代入化简结果,求出整个代数式的值.【详解】解:原式,将,代入得:.【点睛】本题主要是考查了整式的化简求值,熟练掌握完全平方公式以及单项式乘多项式的法则,是求解本题的关键.6、(1)见解析;(2)(a+x)(a-x)=a2-x2;②长宽相等,均为a时,面积最大,理由见解析【分析】(1)可以拼成梯形或拼成长为a+b、宽为a﹣b的长方形,利用不同方法表示同一图形面积来验证平方差公式;(2)①修改后2的花园是个长为(a+x)米、宽为(a﹣x)米的长方形,由长方形的面积=长×宽;②在周长为定值4a的长方形中,当边长为a为正方形时,面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 春分祈福活动策划方案
- 印刻企业咨询服务方案范文
- 施工方案测量方案
- 夏天午餐营销方案
- 搏击武术活动方案策划
- 中华传统文化主题教育方案
- 智能制造工厂信息化建设方案规划
- 小学科学教学教案及课后反思模板
- 消防安全管理软件应用与数据分析
- 小学四年级英语全册教学设计方案
- 2025北京市尖垡留置管理中心招聘事业单位6人考试参考试题及答案解析
- 检验科知识技能培训课件
- 少儿足球培训总结
- (2025年)册人力资源管理试题及答案
- 2025年河北邯郸市第一医院公开招聘控制数管理人员150名考试参考题库及答案解析
- 纪委监委试题题库及答案
- 《材料分析测试技术》全套教学课件
- 安全学原理第2版-ppt课件(完整版)
- 心理普查回访记录表(辅导员用)
- 广播电视新闻评论全书课件完整版ppt全套教学教程最全电子教案电子讲义
- 重庆公路工程工程量清单及计量规范
评论
0/150
提交评论