基础强化北师大版9年级数学上册期末试题及答案详解【有一套】_第1页
基础强化北师大版9年级数学上册期末试题及答案详解【有一套】_第2页
基础强化北师大版9年级数学上册期末试题及答案详解【有一套】_第3页
基础强化北师大版9年级数学上册期末试题及答案详解【有一套】_第4页
基础强化北师大版9年级数学上册期末试题及答案详解【有一套】_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版9年级数学上册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()A. B.C. D.2、将一元二次方程化成(a,b为常数)的形式,则a,b的值分别是(

)A.,21 B.,11 C.4,21 D.,693、如图,点A与点B关于原点对称,点C在第四象限,∠ACB=90°.点D是轴正半轴上一点,AC平分∠BAD,E是AD的中点,反比例函数()的图象经过点A,E.若△ACE的面积为6,则的值为(

)A. B. C. D.4、一元二次方程(m+1)x2-2mx+m2-1=0有两个异号根,则m的取值范围是(

)A.m<1 B.m<1且m≠-1C.m>1 D.-1<m<15、一个圆柱体钢块,正中央被挖去了一个长方体孔,其俯视图如图所示.则此圆柱体钢块的主视图可能是下列选项中的(

)A. B. C. D.6、如图,一次函数y=-3x+4的图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A,B重合),过点P分别作OA和OB的垂线,垂足为C,D.若矩形OCPD的面积为1时,则点P的坐标为()A.(,3) B.(,2) C.(,2)和(1,1) D.(,3)和(1,1)二、多选题(6小题,每小题2分,共计12分)1、下列四个命题中正确的命题有(

)A.两个矩形一定相似 B.两个菱形都有一个角是40°,那么这两个菱形相似C.两个正方形一定相似 D.有一个角相等的两个等腰梯形相似2、如图,点P在函数(x>0,k>2,k为常数)的图象上,PC⊥x轴交的图象于点A,PD⊥y轴于点D,交,当点P在(x>0,k>2,k为常数)的图象上运动时(

)A.ODB与OCA的面积相等 B.四边形PAOB的面积不会发生变化C.PA与PB始终相等 D.3、下列命题中真命题有(

)A.四个角相等的四边形是矩形 B.对角线垂直的四边形是菱形C.对角线相等的平行四边形是矩形 D.四边相等的四边形是正方形4、已知反比例函数y=﹣,则下列结论错误的是()A.点(1,2)在它的图象上 B.其图象分别位于第一、三象限C.y随x的增大而增大 D.如果点P(m,n)在它的图象上,则点Q(n,m)也在它的图象上5、如图,∠1=∠2,则下列各式能说明ABC∽ADE的是(

)A.∠D=∠B B.∠E=∠C C. D.6、下列多边形中,一定不相似的是(

)A.两个矩形 B.两个菱形 C.两个正方形 D.两个平行四边形第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、一个直角三角形的两条直角边相差5cm,面积是7cm2,则其斜边的长是___.2、如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.3、在平面直角坐标系中,点O为坐标原点,点A的坐标为(3,4),点B的坐标为(7,0),D,E分别是线段AO,AB上的点,以DE所在直线为对称轴,把△ADE作轴对称变换得△A′DE,点A′恰好在x轴上,若△OA′D与△OAB相似,则OA′的长为________.(结果保留2个有效数字)4、已知、在同一个反比例函数图像上,则________.5、已知方程x2﹣3x+1=0的根是x1和x2,则x1+x2﹣x1x2=___.6、若m,n是一元二次方程的两个实数根,则的值为___________.7、如图,在边长为1的正方形ABCD中,等边△AEF的顶点E、F分别在边BC和CD上则下列结论:①CE=CF:②∠AEB=75°;③S△EFC=1;④,其中正确的有______(用序号填写)8、制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是_____元.四、解答题(6小题,每小题10分,共计60分)1、如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=;DP=;BQ=;CQ=.(2)当t为何值时,四边形APQB是平行四边形?(3)当t为何值时,四边形PDCQ是平行四边形?2、如图,一次函数y=ax+b(a、b为常数,且a>0)与反比例函数y=(k为常数,且k≠0)的图象相交于点A(3,4),与x轴交于点C.(1)求反比例函数的解析式;(2)点P在x轴上,且P的坐标为(7,0),ACP的面积为20,求一次函数的解析式.3、如图,已知正方形点在边上,以为边在左侧作正方形;以为邻边作平行四边形连接.(1)判断和的数量及位置关系,并说明理由;(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由.4、如图1,正方形ABCD中,AB=5,点E为BC边上一动点,连接AE,以AE为边,在线段AE右侧作正方形,连接CF、DF.设.(当点E与点B重合时,x的值为0),.小明根据学习函数的经验,对函数随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、测量、观察、计算,得到了x与y1、y2的几组对应值;x0123455.004.123.614.125.0001.412.834.245.657.07(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,并画出函数y1,y2的图象;(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为cm.5、如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC,求证:PD//AB.6、发现:四个连续的整数的积加上是一个整数的平方.验证:(1)的结果是哪个数的平方?(2)设四个连续的整数分别为,试证明他们的积加上是一个整数的平方;延伸:(3)有三个连续的整数,前两个整数的平方和等于第三个数的平方,试求出这三个整数分别是多少.-参考答案-一、单选题1、A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选A.【考点】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.2、A【解析】【分析】根据配方法步骤解题即可.【详解】解:移项得,配方得,即,∴a=-4,b=21.故选:A【考点】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方.3、C【解析】【分析】过A作,连接OC、OE,根据点A与点B关于原点对称,∠ACB=90°,AC平分∠BAD得出,从而得出三角形AEC的面积与三角形AOE的面积相等,设,根据E是AD的中点得出得出三角形OAE的面积等于四边形AFGE的面积建立等量关系求解.【详解】解:过A作,连接OC,连接OE:∵点A与点B关于原点对称,∠ACB=90°∴又∵AC平分∠BAD∴∴∴设,根据E是AD的中点得出:∴解得:故答案选:C.【考点】本题考查反比例函数与几何综合,有一定的难度.将三角形AEC的面积转化与三角形AOE的面积相等是解题关键.4、B【解析】【分析】设方程两根为x1,x2,根据一元二次方程的定义和根与系数的关系求解即可.【详解】解:设方程两根为x1,x2,根据题意得m+1≠0,,解得m<1且m≠-1,∵x1•x2<0,∴Δ>0,∴m的取值范围为m<1且m≠-1.故选:B.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程根与系数的关系.5、C【解析】【分析】主视图是从物体正面看所得到的图形.几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.【详解】解:此圆柱体钢块的主视图可能是:故选:C.【考点】本题考查简单组合体的三视图,画三视图时注意“长对正,宽相等,高平齐”,被其他部分遮挡而看不见的部分的轮廓线化成虚线.6、D【解析】【分析】由点P在线段AB上可设点P的坐标为(m,-3m+4)(0<m<),进而可得出OC=m,OD=-3m+4,结合矩形OCPD的面积为1,即可得出关于m的一元二次方程,解之即可得出m的值,再将其代入点P的坐标中即可求出结论.【详解】解:∵点P在线段AB上(不与点A,B重合),且直线AB的解析式为y=-3x+4,∴设点P的坐标为(m,-3m+4)(0<m<),∴OC=m,OD=-3m+4.∵矩形OCPD的面积为1,∴m(-3m+4)=1,∴m1=,m2=1,∴点P的坐标为(,3)或(1,1).故选:D.【考点】本题考查了一次函数图象上点的坐标特征以及解一元二次方程,利用一次函数图象上点的坐标特征及,找出关于m的一元二次方程是解题的关键.二、多选题1、BC【解析】【分析】根据两个图形相似的性质及判定方法,对应边的比相等,对应角相等,两个条件同时满足来判断正误.【详解】解:A两个矩形对应角都是直角相等,对应边不一定成比例,所以不一定相似,故本小题错误;B两个菱形有一个角相等,则其它对应角也相等,对应边成比例,所以一定相似,故本小题正确;C两个正方形一定相似,正确;D有一个角相等的两个等腰梯形,对应角一定相等,但对应边的比不一定相等,故本小题错误.故选:BC.【考点】本题考查的是相似多边形的判定及菱形,矩形,正方形,等腰梯形的性质及其定义.2、AB【解析】【分析】由反比例函数k的几何意义可判断出各个结论的正误.【详解】解:A.∵点A,B在函数的图象上,∴,故选项A正确;B.∵矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化;故此选项正确.C.PA与PB不一定相等,只有当四边形OCPD是正方形时满足PA=PB,故此选项不正确;D.∵A、B在上,∴S△AOC=S△BOE,∴•OC•AC=•OD•BD,∴OC•AC=OD•BD,∵OC=PD,OD=PC,∴PD•AC=DB•PC,∴.故此选项不正确.故选AB【考点】此题是反比例函数综合题,主要考查了反比例函数(k≠0)中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.3、AC【解析】【分析】真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.因此,分别根据矩形、菱形、正方形的判定作出判断得即可.【详解】解:A、根据四边形的内角和是360度得出,四个角相等的四边形即四个内角是直角,故此四边形是矩形,故此命题是真命题,符合题意;B、只有对角线互相平分且垂直的四边形是菱形,故此命题不是真命题,不符合题意;C、对角线互相平分且相等的四边形是矩形,故此命题不是真命题,符合题意;D、四边相等的四边形是菱形,故此命题不是真命题,不符合题意.故选AC.【考点】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4、ABC【解析】【分析】根据反比例函数图象上点的坐标特征、反比例函数的性质解答.【详解】A、将x=1代入y=-得到y=-2≠2,∴点(1,2)不在反比例函数y=-2x的图象上,故本选项错误;B、因为比例系数为-2,则函数图象过二、四象限,故本选项错误;C、在每一象限内y随x的增大而增大,故本选项错误.D、如果点P(m,n)在它的图象上,则点Q(n,m)也在它的图象上,故本选项正确;故选:ABC.【考点】本题考查了反比例函数的性质,熟悉反比例函数的图象是解题的关键.5、ABC【解析】【分析】根据∠1=∠2,可知∠DAE=∠BAC,因此只要再找一组对应角相等或两组对应边成比例即可.【详解】解:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、∵∠DAE=∠BAC,∠D=∠B,∴ABC∽ADE,故A选项正确;B、∵∠DAE=∠BAC,∠E=∠C,∴ABC∽ADE,故B选项正确;C、∵∠DAE=∠BAC,,∴ABC∽ADE,故C选项正确;D、对应边成比例但无法证明其夹角相等,故其不能推出两三角形相似.故选:ABC.【考点】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似,熟练掌握相似三角形的判定是解决本题的关键.6、ABD【解析】【分析】利用相似多边形的对应边的比相等,对应角相等分析.【详解】解:要判断两个多边形是否相似,需要看对应角是否相等,对应边的比是否相等.矩形、菱形、平行四边形都属于形状不唯一确定的图形,即对应角、对应边的比不一定相等,故不一定相似,选项A、B、D符合题意;而两个正方形,对应角都是90°,对应边的比也都相等,故一定相似,选项C不符合题意.故选:ABD.【考点】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边的比相等,对应角相等.两个条件必须同时具备.三、填空题1、cm【解析】【分析】设较短的直角边长是xcm,较长的就是(x+5)cm,根据面积是7cm,求出直角边长,根据勾股定理求出斜边长.【详解】解:设这个直角三角形的较短直角边长为xcm,则较长直角边长为(x+5)cm,根据题意,得,所以,解得,,因为直角三角形的边长为正数,所以不符合题意,舍去,所以x=2,当x=2时,x+5=7,由勾股定理,得直角三角形的斜边长为==cm.故答案为:cm.【考点】本题考查了勾股定理,一元二次方程的应用,关键是知道三角形面积公式以及直角三角形中勾股定理的应用.2、或##或【解析】【分析】连接,根据题意可得,当∠ADQ=90°时,分点在线段上和的延长线上,且,勾股定理求得即可.【详解】如图,连接,在Rt△ABC中,∠ACB=90°,,,,,根据题意可得,当∠ADQ=90°时,点在上,且,,如图,在中,,在中,故答案为:或.【考点】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点的位置是解题的关键.3、2.0或3.3【解析】【分析】由点A的坐标为(3,4),点B的坐标为(7,0),可得OA=5,OB=7,AB=4,然后分别由△OA′D∽△OAB与△OA′D∽△OBA,根据相似三角形的对应边成比例,即可得答案.【详解】∵点A的坐标为(3,4),点B的坐标为(7,0),∴OA==5,OB=7,AB==4,若△OA′D∽△OAB,则,设AD=x,则OD=5﹣x,A′D=x,即,解得:x≈2.2,∴,∴OA′=2.0;若△OA′D∽△OBA,则,同理:可得:OA′≈3.3.故答案为2.0或3.3.【考点】此题考查了相似三角形的性质与折叠的知识.注意数形结合与方程思想的应用,小心别漏解是解题关键.4、【解析】【分析】首先设反比例函数解析式为,然后将两点坐标分别代入,即可得出和的表达式,进而得解.【详解】解:设反比例函数解析式为,将、分别代入,得,∴故答案为.【考点】此题主要考查反比例函数的性质,熟练掌握,即可解题.5、2【解析】【分析】根据根与系数的关系可得出x1+x2=3、x1x2=1,将其代入x1+x2﹣x1x2中即可求出结论.【详解】解:∵方程x2﹣3x+1=0的两个实数根为x1、x2,∴x1+x2=3、x1x2=1,∴x1+x2﹣x1x2=3﹣1=2,故答案为:2.【考点】本题考查了根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.6、3【解析】【分析】先根据一元二次方程的解的定义得到m2+3m-1=0,则3m-1=-m2,根据根与系数的关系得出m+n=-3,再将其代入整理后的代数式计算即可.【详解】解:∵m是一元二次方程x2+3x-1=0的根,∴m2+3m-1=0,∴3m-1=-m2,∵m、n是一元二次方程x2+3x-1=0的两个根,∴m+n=-3,∴,故答案为:3.【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程()的两根时,,.也考查了一元二次方程的解.7、①②④【解析】【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据等边三角形的边长求得直角三角形的边长,从而求得面积③的正误,根据勾股定理列方程可以判断④的正误.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;∵正方形ABCD的边长为1,③说法错误,∵∠AEB=75°,∠AEF=60°,∴∠CEF=45°,∴△CEF是等腰直角三角形,设BE=DF=x,∴CE=CF=1-x,(不合题意,舍去),∴EF=;④说法正确;∴正确的有①②④.故答案为①②④.【考点】本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大.8、1080【解析】【分析】直接利用相似多边形的性质进而得出答案.【详解】∵将此广告牌的四边都扩大为原来的3倍,∴面积扩大为原来的9倍,∴扩大后长方形广告牌的成本为:120×9=1080(元).故答案为:1080.【考点】此题考查相似多边形的性质,相似多边形的面积的比等于相似比的平方.四、解答题1、(1)t,12﹣t,15﹣2t,2t(2)t=5s时四边形APQB是平行四边形(3)当t=4s时,四边形PDCQ是平行四边形【解析】【分析】(1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,DP,BQ,CQ的长;(2)当AP=BQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;(3)当PD=CQ时,四边形PDCQ是平行四边形;建立关于t的一元一次方程方程,解方程求出符合题意的t值即可.【详解】解:(1)AP=t,DP=12﹣t,BQ=15﹣2t,CQ=2t;(2)根据题意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.∵AD∥BC,∴当AP=BQ时,四边形APQB是平行四边形,∴t=15﹣2t,解得t=5,∴t=5s时四边形APQB是平行四边形;(3)由AP=tcm,CQ=2tcm,∵AD=12cm,BC=15cm,∴PD=AD﹣AP=12﹣t,如图1,∵AD∥BC,∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t,解得t=4s,∴当t=4s时,四边形PDCQ是平行四边形.【考点】本题考查了平行四边形的判定和性质的应用,题目是一道综合性比较强的题目,难度适中,解题的关键是把握“化动为静”的解题思想.2、(1)y=;(2)y=x+2.【解析】【分析】(1)利用待定系数法即可求得反比例函数的解析式;(2)利用三角形面积求得C的坐标,然后利用待定系数法即可求得一次函数的解析式.【详解】解:(1)∵反比例函数y=(k为常数,且k≠0)的图象过点A(3,4),∴4=,∴k=12,∴反比例函数的解析式为y=;(2)∵点P、C在x轴上,△ACP的面积为20,∴PC•4=20,∴PC=10,∵P(7,0),∴C(﹣3,0),把A(3,4),C(﹣3,0)代入y=ax+b(a、b为常数,且a>0)得,解得,∴一次函数的解析式为y=x+2.【考点】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式,三角形面积,也考查了待定系数法求函数解析式.3、(1);;理由见解析;(2)与的数量及位置关系都不变;答案见解析.【解析】【分析】(1)证明,由全等三角形的性质得出,,得出,则可得出结论;(2)证明,由全等三角形的性质得出,,由平行线的性质证出,则可得出结论.【详解】解:(1),.由题意可得,平行四边形为矩形,,,,,,,,,设与交于点,则,即.(2)与的数量及位置关系都不变.如图,延长到点,四边形为平行四边形,,,,,,,,,,又,,,,,,,,,即.【考点】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,解题的关键是:熟练掌握正方形的性质.4、(1)见解析;(2)见解析;(3)2.59.【解析】【分析】(1)画图、测量可得;(2)依据表中的数据,描点、连线即可得;(3)由题意得出△CDF是等腰三角形时BE的长度即为y1与y2交点的横坐标,据此可得答案.【详解】(1)补全表格如下:x012345y15.04.123.613.614.125.0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论