




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
冀教版8年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、下列说法错误的是()A.平行四边形对边平行且相等 B.菱形的对角线平分一组对角C.矩形的对角线互相垂直 D.正方形有四条对称轴2、如图,菱形的对角线、相交于点,,,为过点的一条直线,则图中阴影部分的面积为()A.4 B.6 C.8 D.123、如图,点A,B,C在同一直线上,且,点D,E分别是AB,BC的中点.分别以AB,DE,BC为边,在AC同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作,,,若,则等于()A. B. C. D.4、能清楚地反映漳州市近三年初中毕业学生人数的变化情况,应绘制()A.条形统计图 B.扇形统计图 C.折线统计图 D.直方图5、点P在第二象限内,点P到x轴的距离是6,到y轴的距离是2,那么点P的坐标为()A.(﹣6,2) B.(﹣2,﹣6) C.(﹣2,6) D.(2,﹣6)6、在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆一定与()A.x轴相交 B.y轴相交 C.x轴相切 D.y轴相切7、设P(x,y1),Q(x,y2)分别是函数C1,C2图象上的点,当a≤x≤b时,总有-1≤y1-y2≤1恒成立,则称函数C1,C2在a≤x≤b上是“逼近函数”,a≤x≤b为“逼近区间”.则下列结论:①函数y=x-5,y=-x-2在1≤x≤2上是“逼近函数”;②函数y=x-5,y=2x-3在3≤x≤4上是“逼近函数”;③0≤x≤1是函数y=x2-x+3,y=x2-3x+4的“逼近区间”;④2≤x≤3是函数y=x2-x+3,y=x2+4x的“逼近区间”.其中,正确的有()A.①③ B.①④ C.②③ D.②④第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、在平面直角坐标系中,点P的坐标为(a,b),点P的“变换点”P'的坐标定义如下:当a≥b时,P'点坐标为(a,-b);当a<b时,P'点坐标为(a+4,b-2).线段l:y=-0.5x+3(-2≤x≤6)上所有点按上述“变换点”组成一个新的图形,若直线y=kx+5与组成的新的图形有两个交点,则k的取值范围是______.2、如图,在矩形ABCD中,DE⊥CE,AE<BE,AD=4,AB=10,则DE长为________.3、函数的定义域为__________.4、一次函数y=﹣2x+7的图象不经过第_____象限.5、五边形内角和为__________.6、点(2,-3)关于x轴的对称点的坐标是______.7、如图,∠EAD和∠DCF是四边形ABCD的外角,∠EAD的平分线AG和∠DCF的平分线CG相交于点G.若∠B=m°,∠D=n°,则∠G=______°.(用含m、n的代数式表示)8、如图,在平行四边形ABCD中,∠D=100°,AC为对角线,将△ACD绕点A顺时针旋转一定的角度后得到△AEF,使点D的对应点E落在边AB上,若点C的对应点F落在边CB的延长线上,则∠EFB的度数为___.三、解答题(7小题,每小题10分,共计70分)1、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.2、在平面直角坐标系中,点,点,点.以点O为中心,逆时针旋转,得到,点的对应点分别为.记旋转角为.(1)如图①,当点C落在上时,求点D的坐标;(2)如图②,当时,求点C的坐标;(3)在(2)的条件下,求点D的坐标(直接写出结果即可).3、在一定弹性限度内,弹簧挂上物体后会伸长.现测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(已知在弹性限度内该弹簧悬挂物体后的最大长度为21cm.)所挂物体质量x/kg0123456弹簧长度y/cm1212.51313.51414.515(1)有下列说法:①x与y都是变量,且x是自变量,y是x的函数;②所挂物体质量为6kg时,弹簧伸长了3cm;③弹簧不挂重物时的长度为6cm;④物体质量每增加1kg,弹簧长度y增加0.5cm.上述说法中错误的是(填序号)(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式及自变量的取值范围.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.4、已知A、B两地相距3km,甲骑车匀速从A地前往B地,如图表示甲骑车过程中离A地的路程y甲(km)与他行驶所用的时间x(min)之间的关系.根据图像解答下列问题:(1)甲骑车的速度是km/min;(2)若在甲出发时,乙在甲前方1.2km的C处,两人均沿同一路线同时匀速出发前往B地,在第4分钟甲追上了乙,两人到达B地后停止.请在下面同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图像;(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.5、如图,在平面直角坐标系中,直线与直线相交于点.(1)求m,b的值;(2)求的面积;(3)点P是x轴上的一点,过P作垂于x轴的直线与的交点分别为C,D,若P点的横坐标为n,当时直接写出n的取值范围.6、在平面直角坐标系xOy中,点A(a,c)和点B(b,d).给出如下定义:以AB为边,作正方形ABCD,按照逆时针方向排列A、B、C、D四个顶点,该正方形上的点到直线距离的最大值定义为:逆序正方形到直线的最大距离.如图1,直线经过(0,3)且垂直于y轴,点A(﹣2,2),点B(﹣2,﹣1),可求得点C(1,﹣1),D(1,2),且逆序正方形ABCD到直线的最大距离为4.(1)若点A(1,0),点B(3,﹣2),则点C的坐标为,点D的坐标为,逆序正方形ABCD到直线y=﹣x的最大距离为.(2)如图2,若点A(0,4),点B(3,0),求逆序正方形ABCD到直线y=x+2的最大距离.(3)如果点A(a,1),B(a,﹣1),若存在逆序正方形ABCD到直线y=x的最大距离大于2,直接写出a的取值范围.7、甲、乙两车匀速从同一地点到距离出发地480千米处的景点,甲车出发半小时后,乙车以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止,甲、乙两车之间的距离(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲车行驶的速度是千米/小时.(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范围.(3)直接写出两车相距85千米时x的值.-参考答案-一、单选题1、C【解析】【分析】根据矩形的性质、平行四边形的性质、菱形的性质和正方形的性质分别进行判断即可.【详解】解:A、平行四边形对边平行且相等,正确,不符合题意;B、菱形的对角线平分一组对角,正确,不符合题意;C、矩形的对角线相等,不正确,符合题意;D、正方形有四条对称轴,正确,不符合题意;故选:C.【点睛】本题考查了矩形的性质、平行四边形的性质、菱形的性质和正方形的性质,掌握以上性质定理是解题的关键.2、B【解析】【分析】根据菱形的性质可证出,可将阴影部分面积转化为的面积,根据菱形的面积公式计算即可.【详解】解:四边形为菱形,,,,,,∴,∴,∴故选:.【点睛】此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为的面积为解题关键.3、B【解析】【分析】设BE=x,根据正方形的性质、平行四边形的面积公式分别表示出S1,S2,S3,根据题意计算即可.【详解】∵,∴AB=2BC,又∵点D,E分别是AB,BC的中点,∴设BE=x,则EC=x,AD=BD=2x,∵四边形ABGF是正方形,∴∠ABF=45°,∴△BDH是等腰直角三角形,∴BD=DH=2x,∴S1=DH•AD=,即2x•2x=,∴x2=,∵BD=2x,BE=x,∴S2=MH•BD=(3x−2x)•2x=2x2,S3=EN•BE=x•x=x2,∴S2+S3=2x2+x2=3x2=,故选:B.【点睛】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.4、C【解析】【分析】根据统计图的特点解答.【详解】解:能清楚地反映漳州市近三年初中毕业学生人数的变化情况,应绘制折线统计图,故选:C.【点睛】此题考查了统计图的特点,条形统计图能够直观地反映各变量数量的差异,折线图能直观反映各变量的变化趋势,扇形统计图能清楚地表示各部分在总体中所占的百分比,直方图体现个体的数量,熟记每种统计图的特点是解题的关键.5、C【解析】【分析】根据点(x,y)到x轴的距离为|y|,到y轴的距离|x|解答即可.【详解】解:设点P坐标为(x,y),∵点P到x轴的距离是6,到y轴的距离是2,∴|y|=6,|x|=2,∵点P在第二象限内,∴y=6,x=-2,∴点P坐标为(-2,6),故选:C.【点睛】本题考查点到坐标轴的距离、点所在的象限,熟知点到坐标轴的距离与坐标的关系是解答的关键.6、D【解析】【分析】根据点(2,3)到y轴的距离为2,到x轴的距离为3即可判断.【详解】∵圆是以点(2,3)为圆心,2为半径,∴圆心到y轴的距离为2,到x轴的距离为3,则2=2,2<3∴该圆必与y轴相切,与x轴相离.故选D.【点睛】本题是直线和圆的位置关系及坐标与图形的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.7、A【解析】【分析】根据当a≤x≤b时,总有-1≤y1-y2≤1恒成立,则称函数C1,C2在a≤x≤b上是“逼近函数”,a≤x≤b为“逼近区间”,逐项进行判断即可.【详解】解:①y1-y2=2x-3,在1≤x≤2上,当x=2时,y1-y2最大值为1,当x=1时,y1-y2最小值为-1,即-1≤y1-y2≤1,故函数y=x-5,y=-x-2在1≤x≤2上是“逼近函数”正确;②y1-y2=-x-2,在3≤x≤4上,当x=3时,y1-y2最大值为-5,当x=4时,y1-y2最小值为-6,即-6≤y1-y2≤-5,故函数y=x-5,y=2x-3在3≤x≤4上是“逼近函数”不正确;③y1-y2=2x-1,在0≤x≤1上,当x=1时,y1-y2最大值为1,当x=0时,y1-y2最小值为-1,即-1≤y1-y2≤1,故0≤x≤1是函数y=x2-x+3,y=x2-3x+4的“逼近区间”正确;④y1-y2=-5x+3,在2≤x≤3上,当x=2时,y1-y2最大值为-7,当x=3时,y1-y2最小值为-12,即-12≤y1-y2≤-7,故2≤x≤3是函数y=x2-x+3,y=x2+4x的“逼近区间”不正确;∴正确的有①③,故选:A.【点睛】本题考查了新定义,以及一次函数的性质,解题的关键是读懂“逼近函数”和“逼近区间”的含义,会求函数在某个范围内的最大、最小值.二、填空题1、【解析】【分析】先求当a=b时,x=-0.5x+3,求出分界点(2,2),然后确定分段函数为y=0.5x-3(2≤x≤6)和y=-0.5x+3(2≤x<6),根据直线y=kx+5与组成的新的图形有两个交点,得出点(2,2)和点(6,0)在直角y=kx+5上,得出k=-和k=,列出不等式即可.【详解】解:当a=b时,x=-0.5x+3,解得x=2,分界点为(2,2),∴线段l:y=-0.5x+3(2≤x≤6)上点变为y=0.5x-3(2≤x≤6),线段l:y=-0.5x+3(-2≤x<2)上点用过平移变为y=-0.5x+3(2≤x<6),∵若直线y=kx+5与组成的新的图形有两个交点,∴点(2,2)和点(6,0)在直角y=kx+5上,∴点(2,2)在y=kx+5上,得2=2k+5,解得k=-,点(6,0)在直角y=kx+5上,得6k+5=0,解得k=,直线y=kx+5与组成的新的图形有两个交点,则k的取值范围是.故答案为.【点睛】本题考查新定义“变换点”,根据新定义确定分段函数,利用图像找出满足条件的点坐标,求函数值,列不等式,掌握新定义“变换点”,根据新定义确定分段函数,利用图像找出满足条件的点坐标,求函数值,列不等式是解题关键.2、【解析】【分析】设AE=x,则BE=10﹣x,由勾股定理得AD2+AE2=DE2,BC2+BE2=CE2,DE2+CE2=CD2,则AD2+AE2+BC2+BE2=CD2,即42+x2+42+(10﹣x)2=102,解得:x=2或x=8(舍去),则AE=2,然后由勾股定理即可求解.【详解】解:设AE=x,则BE=10﹣x,∵四边形ABCD是矩形,∴CD=AB=10,∠A=∠B=90°,∴AD2+AE2=DE2,BC2+BE2=CE2,∵DE⊥CE,∴∠DEC=90°,∴DE2+CE2=CD2,∴AD2+AE2+BC2+BE2=CD2,即42+x2+42+(10﹣x)2=102,解得:x=2或x=8(不合题意,舍去),∴AE=2,∴DE===2,故答案为:2.【点睛】本题考查了矩形的性质,勾股定理,掌握勾股定理是解题的关键.3、且【解析】【分析】由分式与二次根式有意义的条件可得再解不等式组即可得到答案.【详解】解:由题意可得:由①得:由②得:所以函数的定义域为且故答案为:且【点睛】本题考查的是二次函数的自变量的取值范围,分式有意义的条件,二次根式有意义的条件,掌握“分式与二次根式有意义的条件”是解本题的关键.4、三【解析】【分析】先根据一次函数y=﹣2x+7判断出k、b的符号,再根据一次函数的性质进行解答即可.【详解】解:∵一次函数y=﹣2x+7中,k=﹣2<0,b=7>0,∴此函数的图象经过第一、二、四象限,∴此函数的图象不经过第三象限.故答案为:三.【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.5、540°【解析】【分析】根据n边形的内角和公式(n-2)·180°求解即可.【详解】解:五边形内角和为(5-2)×180°=540°,故答案为:540°.【点睛】本题考查多边形的内角和,熟记多边形的内角和公式是解答的关键.6、(2,3)【解析】【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【详解】解:点(2,−3)关于x轴的对称点的坐标是(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7、【解析】【分析】根据四边形的内角和定理可得,从而得到∠DAE+∠DCF=m°+n°,再由∠EAD的平分线AG和∠DCF的平分线CG相交于点G.可得,进而得到∠BAG+∠BCG=360°−12m°−12【详解】解:∵∠B=m°,∠D=n°,∴,∵∠EAD和∠DCF是四边形ABCD的外角,∴,∵∠EAD的平分线AG和∠DCF的平分线CG相交于点G.∴,∴,∵∠G+∠BAG+∠B+∠BCG=360°,∴∠G=360°−∠B+∠BAG+BCG故答案为:【点睛】本题主要考查了多边形的内角和定理,角平分线的应用,补角的应用,熟练掌握多边形的内角和定理是解题的关键.8、20°##20度【解析】【分析】根据平行四边形ABCD性质求出∠DAB=180°-∠D=80°,根据△ACD绕点A顺时针旋转一定的角度后得到△AEF,得出AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,利用等腰三角形性质求出∠AFC=∠ACF=,根据平行线性质∠DAC=∠ACF=50°,利用三角形内角和求出∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°即可.【详解】解:在平行四边形ABCD中,∠D=100°,∴∠DAB=180°-∠D=80°,∵△ACD绕点A顺时针旋转一定的角度后得到△AEF,∴AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,∴∠FAC=∠FAE+∠BAC=∠CAD+∠BAC=∠BAD=80°∴∠AFC=∠ACF=∵AD∥BC,∴∠DAC=∠ACF=50°,∴∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°,∴∠AFE=∠ACD=30°,∴∠EFB=∠AFC-∠AFE=50°-30°=20°,故答案为20°.【点睛】本题考查平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和,掌握平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和是解题关键.三、解答题1、150°【解析】【分析】先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.【详解】解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,∴∠ADC=180°-∠ADE=55°,∵∠A+∠B+∠C+∠ADE=360°,∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.【点睛】此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.2、(1)(2)(3)【解析】【分析】(1)如图,过点D作DE⊥OA于点E.解直角三角形求出OE,DE,可得结论;(2)如图②,过点C作CT⊥OA于点T,解直角三角形求出OT,CT可得结论;(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.利用勾股定理构建方程求出m,可得结论.(1)如图,过点作,垂足为.∵,,∴,,.∵,∴.在中,由,得.解得.∴,.∵是由旋转得到的,∴,.∴.∴.∴.在中,.∴点的坐标为.(2)如图,过点作,垂足为.由已知,得.∴.∴.∵是由旋转得到的,∴.在中,由,得.∴点的坐标为.(3)如图②中,过点D作DJ⊥OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.∵∠DOC=30°,∠COT=45°,∴∠DOJ=75°,∴∠ODJ=90°-75°=15°,∵KD=KO,∴∠KDO=∠KOD=15°,∴∠OKJ=∠KDO+∠KOD=30°,∴OK=DK=2m,KJ=m,∵OD2=OJ2+DJ2,∴22=m2+(2m+m)2,解得m=(负根已经舍弃),∴OJ=,DJ=,∴D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.3、(1)③④;(2)y=0.5x+12(0≤x≤18);(3)弹簧长度是17cm;(4)所挂物体的质量为16kg.【解析】【分析】(1)由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度,可得答案;(2)由(1)中结论可求出弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式;(3)令x=10时,求出y的值即可;(4)令y=20时,求出x的值即可.(1)解:x与y都是变量,且x是自变量,y是x的函数,故①正确;当x=6时,y=15,当x=0时,y=12,15-12=3,故②正确,③错误;在弹性限度内,物体质量每增加1kg,弹簧长度y增加0.5cm,但是当超出弹性限度后,弹簧长度就不再增加,故④错误;故答案为:③④;(2)解:弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式为y=0.5x+12,∵在弹性限度内该弹簧悬挂物体后的最大长度为21cm.∴0.5x+12≤21,解得:x≤18,∴y=0.5x+12(0≤x≤18);(3)解:当x=10kg时,代入y=0.5x+12,解得y=17cm,即弹簧长度是17cm;(4)当y=20cm时,代入y=0.5x+12,解得x=16,即所挂物体的质量为16kg.【点睛】本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.4、(1)0.5(2)见解析(3)(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km【解析】【分析】(1)由甲骑车6min行驶了3km,可得甲骑车的速度是0.5km/min;(2)设乙的速度为xkm/min,求出乙的速度,可得乙出发后9min到达B地,即可作出图象;(3)由y甲=0.5x,y乙=1.8-0.2x,可得两个函数图象的交点坐标为(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.(1)解:甲骑车6min行驶了3km,∴甲骑车的速度是3÷6=0.5(km/min),故答案为:0.5;(2)解:设乙的速度为xkm/min,由题意得0.5×4-4x=1.2,∴x=0.2,又A、B两地相距3km,A、C两地相距1.2km,∴B、C两地相距1.8km,∴乙出发后1.8÷0.2=9(min)到达B地,在同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图象如下:(3)解:由(1)(2)可知,y甲=0.5x,y乙=1.8-0.2x,由0.5x=1.8-0.2x得x=,当x=时,y甲=y乙=,∴两个函数图象的交点坐标为(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.【点睛】本题考查一次函数的应用,一元一次方程的应用,解题的关键是读懂题意,求出甲、乙速度从而列出函数关系式.5、(1)m=2,b=3(2)12(3)n<23【解析】【分析】(1)先根据直线l2求出m的值,再将点B(m,4)代入直线l1即可得b的值.(2)求出点A坐标,结合点B坐标,利用三角形面积公式计算即可;(3)求出点C和点D的纵坐标,再分C、D在点B左侧和右侧两种情况分别求解.(1)解:∵点B(m,4)直线l2:y=2x上,∴4=2m,∴m=2,∴点B(2,4),将点B(2,4)代入直线得:12×2+b=4解得b=3;(2)将y=0代入y=12x+3∴A(-6,0),∴OA=6,∴△AOB的面积=12(3)令x=n,则12x+3=1当C、D在点B左侧时,则12解得:n<2当C、D在点B右侧时,则2n−1解得:n>10综上:n的取值范围为n<23或【点睛】本题是一次函数综合题,考查两条直线平行、相交问题,三角形的面积,解题的关键是灵活应用待定系数法,学会利用图象,根据条件确定自变量取值范围.6、(1)(5,0);(3,2);(2)(3)a>1或a<-3【解析】【分析】(1)由正方形边长相等可得C的坐标,由正方形对角线互相垂直可得D的坐标,两点确定一条直线可得直线AB解析式y=-x+1,直线AB与直线y=-x平行,且与x轴夹角为45°,延长DA到点E交直线y=-x于E点,由勾股定理得AE=,由两点间距离公式DA=2,即DE=;(2)过C点作CM⊥x,垂足为M,过D作DN⊥y轴,垂足为N,证△AOB≌△BMC,可得C的坐标,同理,△DNA≌△AOB可得D为(4,7),过C作CE垂直y=x,垂足为E,直线CE的解析式为y=-x+10,直线CE:y=-x+10与y=x+2相交点为E(4,6),由两点距离公式可得CE=3;(3)由题意易得AB=2,分情况讨论,当a>-1时,C(a+2,-1),D(a+2,1),同(2)的思路方法可得a>1,当a<-1时,C(a-2,-1),D(a-2,1),同(2)的思路方法可得a<-3.(1)如图:∵A(1,0),B(3,-2),由图可知:正方形的边长相等可得点C坐标为(5,0),由正方形的对角线互相垂直得点D坐标为(3,2);由A(1,0),B(3,-2)可得直线AB:y=-x+1,直线AB与直线y=-x平行且与x轴的夹角为45°,故C、D点到直线y=-x的距离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 7262-2025公路通信技术要求及设备配置
- 中国地板护理蜡项目创业计划书
- 双导师培养PBL教学法用于中医专业型研究生科研素质的培养
- 中国卷式夹板项目创业计划书
- 中国辛醇项目商业计划书
- 唐山市人民医院输血医学专业英语术语考核
- 通辽市人民医院神经介入材料选择与使用考核
- 2025第三人民医院无菌技术与隔离概念在内镜中的应用笔试
- 2025第三人民医院物理治疗设备操作考核
- 邯郸市中医院肝切除术后并发症防治能力考核
- 保险基础知识培训
- 口腔药品急救知识培训课件
- 2025年宁夏中考英语试卷附答案
- 手机媒体概论(自考14237)复习题库(含真题、典型题)
- 《新概念英语》第三册课文详解及课后答案
- 磁路基础知识
- 2020版昆士兰临床指南“妊娠期和产褥期静脉血栓栓塞的预防”要点解读
- 寰枢椎后路内固定技术课件
- 超星尔雅学习通《研究生科研能力训练与培养》章节测试含答案
- 第2章_铁路线路
- 矩量法 Method of Moment
评论
0/150
提交评论