解析卷-河南省项城市中考数学真题分类(勾股定理)汇编定向训练试卷(附答案详解)_第1页
解析卷-河南省项城市中考数学真题分类(勾股定理)汇编定向训练试卷(附答案详解)_第2页
解析卷-河南省项城市中考数学真题分类(勾股定理)汇编定向训练试卷(附答案详解)_第3页
解析卷-河南省项城市中考数学真题分类(勾股定理)汇编定向训练试卷(附答案详解)_第4页
解析卷-河南省项城市中考数学真题分类(勾股定理)汇编定向训练试卷(附答案详解)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省项城市中考数学真题分类(勾股定理)汇编定向训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、下列各组数据为三角形的三边,能构成直角三角形的是(

)A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,52、如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则△ABE的面积为(

)A.6cm2 B.8cm2 C.10cm2 D.12cm23、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底墙到左墙角的距离为1.5m,顶端距离地面2m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面0.7m,那么小巷的宽度为(

)A.3.2m B.3.5m C.3.9m D.4m4、如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段AB=,使点A,B在小正方形的顶点上,设AB与网格线相交所成的锐角为α,则不同角度的α有(

)A.1种 B.2种 C.3种 D.4种5、若直角三角形的三边长分别为2,4,x,则x的可能值有(

)A.1个 B.2个 C.3个 D.4个6、如图,正方体盒子的棱长为2,M为BC的中点,则一只蚂蚁从A点沿盒子的表面爬行到M点的最短距离为(

)A. B.C. D.7、勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是(

)A. B. C. D.第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,矩形ABCD中,AD=6,AB=8.点E为边DC上的一个动点,△AD'E与△ADE关于直线AE对称,当△CD'E为直角三角形时,DE的长为__.2、已知a、b、c是一个三角形的三边长,如果满足,则这个三角形的形状是_______.3、小聪准备测量河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,把竹竿的顶端拉向岸边,竹竿顶和岸边的水面刚好相齐,则河水的深度为__________.4、如图,在四边形中,,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.5、如图,在一次综合实践活动中,小明将一张边长为10cm的正方形纸片ABCD,沿着BC边上一点E与点A的连线折叠,点B'是点B的对应点,延长EB'交DC于点G,B'G=cm,则△ECG的面积为_____cm2.6、如图,分别以此直角三角形的三边为直径在三角形的外部画半圆,,,则_________.7、如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.8、在平面直角坐标系中,点(3,﹣2)到原点的距离是_____.三、解答题(7小题,每小题10分,共计70分)1、如图所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)出发3s后,求PQ的长;(2)当点Q在边BC上运动时,出发多久后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.2、若的三边,,满足条件,试判断的形状.3、如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且,连接DE,DF.(1)求证:;(2)连接EF,取EF中点G,连接DG并延长交BC于H,连接BG.①依题意,补全图形;②求证:;③若,用等式表示线段BG,HG与AE之间的数量关系,请直接写出结论.4、如图是“弦图”的示意图,“弦图”最早是由三国时期的数学家赵爽在为《周髀算经》作注时给出的,它标志着中国古代的数学成就.它由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形,每个直角三角形的两条直角边分别为a、b,斜边为c.请你运用此图形证明勾股定理:a2+b2=c2.5、如图②,它可以看作是由边长为a、b、c的两个直角三角形(如图①C为斜边)拼成的,其中A、C、D三点在同一条直线上,(1)请从面积出发写出一个表示a、b、c的关系的等式;(要求写出过程)(2)如图③④⑤,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足的有_______个.(3)如图⑥,直角三角形的两直角边长分别为3,5,分别以直角三角形的三边为直径作半圆,则图中阴影部分的面积为_______.6、我方侦查员小王在距离东西向公路400米处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外线测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?7、已知:如图,四边形ABCD,∠A=90°,AD=12,AB=16,CD=15,BC=25.(1)求BD的长;(2)求四边形ABCD的面积.-参考答案-一、单选题1、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和是否等于最大的边的平方即可进行判断.【详解】A、42+72≠82,故不能构成直角三角形;B、22+22≠22,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D.【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.2、A【解析】【分析】根据折叠的条件可得:,在中,利用勾股定理就可以求解.【详解】将此长方形折叠,使点与点重合,,,根据勾股定理得:,解得:..故选:A.【考点】本题考查了利用勾股定理解直角三角形,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.3、C【解析】【分析】如图,在Rt△ACB中,先根据勾股定理求出AB,然后在Rt△A′BD中根据勾股定理求出BD,进而可得答案.【详解】解:如图,在Rt△ACB中,∵∠ACB=90°,BC=1.5米,AC=2米,∴AB2=1.52+22=6.25,∴AB=2.5米,在Rt△A′BD中,∵∠A′DB=90°,A′D=0.7米,BD2+A′D2=A′B2,∴BD2+0.72=6.25,∴BD2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故选:C.【考点】本题考查了勾股定理的应用,正确理解题意、熟练掌握勾股定理是解题的关键.4、C【解析】【详解】如图,(1)当AB=时,AB与网格线相交所成的两个锐角:∠=45°;(2)当AB=时,AB与网格线相交所成的锐角∠有2个不同的角度;综上所述,AB与网格线相交所成的锐角的不同角度有3个.故选C.5、B【解析】【详解】分析:x可为斜边也可为直角边,因此解本题时要对x的取值进行讨论.解答:解:当x为斜边时,x2=22+42=20,所以x=2;当4为斜边时,x2=16-4=12,x=2.故选B.点评:本题考查了勾股定理的应用,注意要分两种情况讨论.6、B【解析】【分析】先利用展开图确定最短路线,再利用勾股定理求解即可.【详解】解:如图,蚂蚁沿路线AM爬行时距离最短;∵正方体盒子棱长为2,M为BC的中点,∴,∴,故选:B.【考点】本题考查了蚂蚁爬行的最短路径为题,涉及到了正方形的性质、正方体的展开图、勾股定理、两点之间线段最短等知识,解题关键是牢记相关概念与灵活应用.7、B【解析】【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【考点】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.二、填空题1、3或6【解析】【分析】分两种情况分别求解,(1)当∠CED′=90°时,如图(1),根据轴对称的性质得∠AED=∠AED′=45′,得DE=AD=6;(2)当∠ED′A=90°时,如图(2),根据轴对称的性质得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直线上,根据勾股定理得AC=10,设DE=D′E=x,则EC=CD−DE=8−x,根据勾股定理得,D′E2+D′C2=EC2,代入相关的值,计算即可.【详解】解:当∠CED′=90°时,如图(1),∵∠CED′=90°,根据轴对称的性质得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)当∠ED′A=90°时,如图(2),根据轴对称的性质得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E为直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直线上,根据勾股定理得,∴CD′=10−6=4,设DE=D′E=x,则EC=CD−DE=8−x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8−x)2,解得x=3,即DE=3;综上所述:DE的长为3或6;故答案为:3或6.【考点】本题考查了矩形的性质、勾股定理、轴对称的性质,熟练掌握矩形的性质、勾股定理、轴对称的性质的综合应用,分情况讨论,作出图形是解题关键.2、直角三角形【解析】【分析】根据绝对值、完全平方数和算数平方根的非负性,可求解出a、b、c的值,再根据勾股定理的逆定理判断即可.【详解】解:由题意得:,解得:,∵,∴三角形为直角三角形.故答案为直角三角形.【考点】本题主要考查了非负数的性质和勾股定理的逆定理,运用非负数的性质求出a、b、c的值是解题的关键.3、2【解析】【分析】根据河水深度、竹竿到岸边的距离、竹竿长构成直角三角形,利用勾股定理进行计算即可.【详解】根据题意画出示意图,如图,则AC=0.5m,,,所以BC即为河水深度,,∵,∴是直角三角形,∴,∴,解得:BC=2(m),故答案为:2.【考点】本题考查了勾股定理,根据题意画示意图找出与所求边长相关线段所构成直角三角形是解题关键.4、29【解析】【分析】如图(见解析),先根据正方形的面积公式可得,再利用勾股定理可得的值,由此即可得出答案.【详解】如图,连接AC,由题意得:,在中,,,在中,,,则正方形丁的面积为,故答案为:29.【考点】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.5、【解析】【分析】根据翻折的性质可知△ABE和△AB′E全等,则BE=B′E,连接AG,可证△AB′G≌△ADG,则DG=B′G=cm,CG=10-DG=cm,在Rt△ECG中,设BE=xcm,根据勾股定理列出方程,可求出BE的值,从而求出CE,最后由三角形面积公式求出△ECG的面积.【详解】根据翻折的性质可知△ABE和△AB′E全等,BE=B′E,连接AG,如图,∵AB′=AD,AG=AG,∴Rt△AB′G≌Rt△ADG,∴DG=B′G=cm,∴CG=10-DG=cm,在Rt△ECG中,设BE=xcm,则CE=(10-x)cm,EG=B′E+B′G=(x+)cm,根据勾股定理列出方程,CE2+CG2=EG2,即,解得:x=2,所以BE=2cm,CE=10-2=8(cm),△ECG的面积=(cm2)故答案为:.【考点】本题考查了勾股定理的应用,结合全等的知识找出题中的线段之间的关系是本题的解题关键.6、【解析】【分析】根据题意设直角三角形的三边为,分别表示出,得出,进而即可求解.【详解】解:设直角三角形的三边为,如图,,,,,S1=18π,S3=50π,故答案为:.【考点】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.7、7【解析】【分析】根据勾股定理求得BC,再根据折叠性质得到AE=CE,进而由三角形的周长=AB+BC求解即可.【详解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案是:7.【考点】本题考查勾股定理、折叠性质,熟练掌握勾股定理是解答的关键.8、【解析】【分析】根据两点的距离公式计算求解即可.【详解】解:由题意知点(3,﹣2)到原点的距离为故答案为:.【考点】本题考查了用勾股定理求解两点的距离公式.解题的关键在于熟练掌握距离公式:、两点间的距离公式为.三、解答题1、(1)PQ=cm(2)出发秒后△PQB能形成等腰三角形(3)当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.【解析】【分析】(1)可求得AP和BQ,则可求得BP,由勾股定理即可得出结论;(2)用t可分别表示出BP和BQ,根据等腰三角形的性质可得到BP=BQ,可得到关于t的方程,可求得t;(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分BQ=BC、CQ=BC和BQ=CQ三种情况,分别得到关于t的方程,可求得t的值.(1)当t=3时,则AP=3,BQ=2t=6,∵AB=16cm,∴BP=AB﹣AP=16﹣3=13(cm),在Rt△BPQ中,PQ===(cm).(2)由题意可知AP=t,BQ=2t,∵AB=16,∴BP=AB﹣AP=16﹣t,当△PQB为等腰三角形时,则有BP=BQ,即16﹣t=2t,解得t=,∴出发秒后△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE=,∴CE===,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.【考点】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.2、三角形为直角三角形,理由见解析【解析】【分析】这是一道有关勾股定理的逆定理、完全平方公式的解答题.把已知条件写成三个完全平方式的和的形式,再由非负数的性质求得三边,根据勾股定理的逆定理即可判断△ABC的形状.【详解】,,即.,,,,,.,,.,,该三角形为直角三角形.【考点】此题主要考查了勾股定理的逆定理、完全平方公式.此题的关键就是灵活掌握完全平方公式的特点,用配方法进行恒等变形,在恒等变形的过程中不要改变式子的值.3、(1)见解析(2)①见解析;②见解析;③BG2+HG2=4AE2.【解析】【分析】(1)证△ADE≌△CDF(SAS),得∠ADE=∠CDF,再证∠EDF=90°,即可得出结论;(2)①依题意,补全图形即可;②由直角三角形斜边上的中线性质得DG=EF,BG=EF,即可得出结论;③先证△DEF是等腰直角三角形,得∠DEG=45°,再证DG⊥EF,DG=EF=EG,BG=EF=EG=FG,得∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,然后证△CDH≌△CDF(ASA),得CH=CF,再由勾股定理即可求解.(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠A=∠B=∠BCD=∠ADC=90°,∴∠DCF=90°,即∠A=∠DCF,又∵AE=CF,∴△ADE≌△CDF(SAS),∴∠ADE=∠CDF,∵∠ADE+∠CDE=90°,∴∠CDF+∠CDE=90°,即∠EDF=90°,∴DE⊥DF;(2)①解:依题意,补全图形如图所示:②证明:由(1)可知,△DEF和△BEF都是直角三角形,∵G是EF的中点,∴DG=EF,BG=EF,∴BG=DG;③BG2+HG2=4AE2,证明:由(1)可知,△ADE≌△CDF,DE⊥DF,∴DE=DF,∴△DEF是等腰直角三角形,∴∠DEG=45°,∵G为EF的中点,∴DG⊥EF,DG=EF=EG,BG=EF=EG=FG,∴∠EGD=∠HGF=∠DGF=90°,∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,∵∠EGB=45°,∴∠GBF=∠GFB=22.5°,∵∠DHF+∠HFG=∠DHF+∠CDH=90°,∴∠HFG=∠CDH=22.5°,∴∠CDF=∠GDF−∠HDC=22.5°=∠CDH,又∵∠DCH=∠DCF=90°,CD=CD,∴△CDH≌△CDF(ASA),∴CH=CF,在Rt△GHF中,由勾股定理得:GF2+HG2=HF2,∵HF=2CF=2AE,GF=BG,∴BG2+HG2=(2AE)2,∴BG2+HG2=4AE2.【考点】本题是四边形综合题,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形斜边上的中线性质、等腰三角形的性质等知识;熟练掌握正方形的性质和等腰直角三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.4、见解析【解析】【分析】根据大正方形的面积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论