版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
廊坊市重点中学2025-2026学年高三数学第一学期期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立 B.当时,该命题成立C.当时,该命题不成立 D.当时,该命题成立2.在中,分别为所对的边,若函数有极值点,则的范围是()A. B.C. D.3.定义在上函数满足,且对任意的不相等的实数有成立,若关于x的不等式在上恒成立,则实数m的取值范围是()A. B. C. D.4.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.17645.已知双曲线:(,)的焦距为.点为双曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是()A. B. C.2 D.36.已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为()A. B. C. D.7.是平面上的一定点,是平面上不共线的三点,动点满足,,则动点的轨迹一定经过的()A.重心 B.垂心 C.外心 D.内心8.已知等差数列中,则()A.10 B.16 C.20 D.249.已知函数,且),则“在上是单调函数”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件10.在展开式中的常数项为A.1 B.2 C.3 D.711.已知函数的图象与直线的相邻交点间的距离为,若定义,则函数,在区间内的图象是()A. B.C. D.12.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.函数在区间内有且仅有两个零点,则实数的取值范围是_____.14.的展开式中二项式系数最大的项的系数为_________(用数字作答).15.已知数列的前项和为,且成等差数列,,数列的前项和为,则满足的最小正整数的值为______________.16.在的展开式中,的系数等于__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四边形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求证:平面ADE⊥平面BDEF;(Ⅱ)若二面角CBFD的大小为60°,求CF与平面ABCD所成角的正弦值.18.(12分)已知曲线,直线:(为参数).(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.19.(12分)已知函数.(1)讨论的单调性;(2)若函数在区间上的最小值为,求m的值.20.(12分)在平面直角坐标系中,,,且满足(1)求点的轨迹的方程;(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程.21.(12分)已知.(1)若,求函数的单调区间;(2)若不等式恒成立,求实数的取值范围.22.(10分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.2.D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.3.B【解析】
结合题意可知是偶函数,且在单调递减,化简题目所给式子,建立不等式,结合导函数与原函数的单调性关系,构造新函数,计算最值,即可.【详解】结合题意可知为偶函数,且在单调递减,故可以转换为对应于恒成立,即即对恒成立即对恒成立令,则上递增,在上递减,所以令,在上递减所以.故,故选B.本道题考查了函数的基本性质和导函数与原函数单调性关系,计算范围,可以转化为函数,结合导函数,计算最值,即可得出答案.4.A【解析】
根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A本小题主要考查合情推理,考查中国古代数学文化,属于基础题.5.A【解析】
由点到直线距离公式建立的等式,变形后可求得离心率.【详解】由题意,一条渐近线方程为,即,∴,,即,,.故选:A.本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础.6.B【解析】
利用复数的除法运算化简z,复数在复平面中对应的点到原点的距离为利用模长公式即得解.【详解】由题意知复数在复平面中对应的点到原点的距离为故选:B本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.7.B【解析】
解出,计算并化简可得出结论.【详解】λ(),∴,∴,即点P在BC边的高上,即点P的轨迹经过△ABC的垂心.故选B.本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键.8.C【解析】
根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C本题考查了等差数列的性质,是数列的常考题型.9.C【解析】
先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【详解】,且),由得或,即的定义域为或,(且)令,其在单调递减,单调递增,在上是单调函数,其充要条件为即.故选:C.本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.10.D【解析】
求出展开项中的常数项及含的项,问题得解。【详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。11.A【解析】
由题知,利用求出,再根据题给定义,化简求出的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,的图象与直线的相邻交点间的距离为,所以的周期为,则,所以,由正弦函数和正切函数图象可知正确.故选:A.本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解.12.D【解析】
根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
对函数零点问题等价转化,分离参数讨论交点个数,数形结合求解.【详解】由题:函数在区间内有且仅有两个零点,,等价于函数恰有两个公共点,作出大致图象:要有两个交点,即,所以.故答案为:此题考查函数零点问题,根据函数零点个数求参数的取值范围,关键在于对函数零点问题恰当变形,等价转化,数形结合求解.14.5670【解析】
根据二项式展开的通项,可得二项式系数的最大项,可求得其系数.【详解】二项展开式一共有项,所以由二项式系数的性质可知二项式系数最大的项为第5项,系数为.故答案为:5670本题考查了二项式定理展开式的应用,由通项公式求二项式系数,属于中档题.15.1【解析】
本题先根据公式初步找到数列的通项公式,然后根据等差中项的性质可解得的值,即可确定数列的通项公式,代入数列的表达式计算出数列的通项公式,然后运用裂项相消法计算出前项和,再代入不等式进行计算可得最小正整数的值.【详解】由题意,当时,.当时,.则,.,,成等差数列,,即,解得..,...,.即,,即,,,,即.满足的最小正整数的值为1.故答案为:1.本题主要考查数列求通项公式、裂项相消法求前项和,考查了转化思想、方程思想,考查了不等式的计算、逻辑思维能力和数学运算能力.16.7【解析】
由题,得,令,即可得到本题答案.【详解】由题,得,令,得x的系数.故答案为:7本题主要考查二项式定理的应用,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)【解析】分析:(1)根据面面垂直的判定定理即可证明平面ADE⊥平面BDEF;(2)建立空间直角坐标系,利用空间向量法即可求CF与平面ABCD所成角的正弦值;也可以应用常规法,作出线面角,放在三角形当中来求解.详解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BDcos30°,解得BD=,所以AB2+BD2=AB2,根据勾股定理得∠ADB=90°∴AD⊥BD.又因为DE⊥平面ABCD,AD平面ABCD,∴AD⊥DE.又因为BDDE=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:如图,由已知可得,,则,则三角形BCD为锐角为30°的等腰三角形.则.过点C做,交DB、AB于点G,H,则点G为点F在面ABCD上的投影.连接FG,则,DE⊥平面ABCD,则平面.过G做于点I,则BF平面,即角为二面角CBFD的平面角,则60°.则,,则.在直角梯形BDEF中,G为BD中点,,,,设,则,,则.,则,即CF与平面ABCD所成角的正弦值为.(Ⅱ)方法二:可知DA、DB、DE两两垂直,以D为原点,建立如图所示的空间直角坐标系D-xyz.设DE=h,则D(0,0,0),B(0,,0),C(-,-,h).,.设平面BCF的法向量为m=(x,y,z),则所以取x=,所以m=(,-1,-),取平面BDEF的法向量为n=(1,0,0),由,解得,则,又,则,设CF与平面ABCD所成角为,则sin=.故直线CF与平面ABCD所成角的正弦值为点睛:该题考查的是立体几何的有关问题,涉及到的知识点有面面垂直的判定,线面角的正弦值,在求解的过程中,需要把握面面垂直的判定定理的内容,要明白垂直关系直角的转化,在求线面角的有关量的时候,有两种方法,可以应用常规法,也可以应用向量法.18.(I);(II)最大值为,最小值为.【解析】试题分析:(I)由椭圆的标准方程设,得椭圆的参数方程为,消去参数即得直线的普通方程为;(II)关键是处理好与角的关系.过点作与垂直的直线,垂足为,则在中,,故将的最大值与最小值问题转化为椭圆上的点,到定直线的最大值与最小值问题处理.试题解析:(I)曲线C的参数方程为(为参数).直线的普通方程为.(II)曲线C上任意一点到的距离为.则.其中为锐角,且.当时,取到最大值,最大值为.当时,取到最小值,最小值为.【考点定位】1、椭圆和直线的参数方程;2、点到直线的距离公式;3、解直角三角形.19.(1)见解析(2)【解析】
(1)先求导,再对m分类讨论,求出的单调性;(2)对m分三种情况讨论求函数在区间上的最小值即得解.【详解】(1)若,当时,;当时.,所以在上单调递增,在上单调递减若.在R上单调递增若,当时,;当时.,所以在上单调递增,在上单调递减(2)由(1)可知,当时,在上单调递增,则.则不合题意当时,在上单调递减,在上单调递增.则,即又因为单调递增,且,故综上,本题主要考查利用导数研究函数的单调性和最值,意在考查学生对这些知识的理解掌握水平.20.(1).(2)的方程为.【解析】
(1)令,则,由此能求出点C的轨迹方程.(2)令,令直线,联立,得,由此利用根的判别式,韦达定理,三角形面积公式,结合已知条件能求出直线的方程。【详解】解:(1)因为,即直线的斜率分别为且,设点,则,整理得.(2)令,易知直线不与轴重合,令直线,与联立得,所以有,由,故,即,从而,解得,即。所以直线的方程为。本题考查椭圆方程、直线方程的求法,考查椭圆方程、椭圆与直线的位置关系,考查运算求解能力,考查化归与转化思想,是中档题。21.(1)答案不唯一,具体见解析(2)【解析】
(1)分类讨论,利用导数的正负,可得函数的单调区间.(2)分离出参数后,转化为函数的最值问题解决,注意函数定义域.【详解】(1)由得或①当时,由,得.由,得或此时的单调递减区间为,单调递增区间为和.②当时,由,得由,得或此时的单调递减区间为,单调递增区间为和综上:当时,单调递减区间为,单调递增区间为和当时,的单调递减区间为,单调递增区间为和.(2)依题意,不等式恒成立等价于在上恒成立,可得,在上恒成立,设,则令,得,(舍)当时,;当时,当变化时,,变化情况如下表:10单调递增单调递减∴当时,取得最大值,,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 资金平衡方案咨询资质(3篇)
- 口腔咨询师怎么写方案(3篇)
- 企业法务咨询解决方案(3篇)
- 软文营销方案咨询乐云seo(3篇)
- 法律咨询公司团建活动方案(3篇)
- 教育咨询师投诉处理方案(3篇)
- 服务区夜间施工方案设计
- 建筑材料性能及使用介绍报告
- 工程招投标文件归档与管理规范
- 2025及未来5年中国金属相框市场调查、数据监测研究报告
- 第五章 亲核取代反应
- 医院医疗设备购置申请表(采购单)
- 体外冲击波碎石课件
- 从业人员健康管理制度完整版
- 2022年中交营口液化天然气有限公司招聘笔试题库及答案解析
- 《消防安全技术实务》课本完整版
- 人教A版高中数学选择性必修一全册质量检测【含答案】
- B2B业务的破 局之道??数字化重塑营销服体系
- 县级结核病定点医院设置规范 T∕CHATA 007-2020
- 北师大版确定位置教案.
- LTD-2100探地雷达使用手册模板
评论
0/150
提交评论