版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《轴对称》定向测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、下列图形中,是轴对称图形的是(
)A. B. C. D.2、等腰三角形两边长为3,6,则第三边的长是(
)A.3 B.6 C. D.3或63、已知点P(2021,﹣2021),则点P关于x轴对称的点的坐标是(
)A.(﹣2021,2021) B.(﹣2021,﹣2021)C.(2021,2021) D.(2021,﹣2021)4、如图,D是等边的边AC上的一点,E是等边外一点,若,,则对的形状最准确的是(
).A.等腰三角形 B.直角三角形 C.等边三角形 D.不等边三角形5、下列电视台标志中是轴对称图形的是(
)A. B.C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、把两个同样大小含角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点,且另外三个锐角顶点在同一直线上.若,则____.2、如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,BD=4,△ABE的周长为14,则△ABC的周长为_____.3、如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置)测得的相关数据为:米,则________米.4、点(3,0)关于y轴对称的点的坐标是_______5、点A(5,﹣2)关于x轴对称的点的坐标为___.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,,的垂直平分线分别交、于点D、E,的垂直平分线分别交、于点F、G.求的周长.2、如图,是边长为3的等边三角形,是等腰三角形,且,以为顶点作一个角,使其两边分别交于点,交于点,连接,求的周长.3、(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE;(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论△ABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.4、如图,在中,,D为的中点.(1)写出点D到三个顶点A、B、C的距离的关系(不要求证明).(2)如果点M、N分别在线段上移动,在移动中保持,请判断的形状,并证明你的结论.5、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.-参考答案-一、单选题1、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得.【详解】解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.2、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6.故选B.【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.3、C【解析】【分析】直接利用关于x轴对称点的性质:横坐标相同,纵坐标互为相反数进而得出答案.【详解】解:∵点P(2021,﹣2021),∴点P关于x轴对称的点的坐标是(2021,2021).故选:C.【考点】此题考查关于x轴、y轴对称的点的坐标,熟记关于轴对称坐标的特点是解题的关键.4、C【解析】【分析】先根据已知利用SAS判定△ABD≌△ACE得出AD=AE,∠BAD=∠CAE=60°,从而推出△ADE是等边三角形.【详解】解:∵三角形ABC为等边三角形,∴AB=AC,∵BD=CE,∠1=∠2,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE=60°,∴△ADE是等边三角形.故选:C.【考点】本题考查了等边三角形的判定和全等三角形的判定方法,掌握等边三角形的判定和全等三角形的判定是本题的关键,做题时要对这些知识点灵活运用.5、A【解析】【分析】根据轴对称图形的定义进行判断,即一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.【详解】解:A选项中的图形是轴对称图形,对称轴有两条,如图所示;B、C、D选项中的图形均不能沿某条直线折叠,直线两旁的部分能够互相重合,因此,它们都不是轴对称图形;故选:A.【考点】本题考查了轴对称图形的概念,其中正确理解轴对称图形的概念是解题关键.二、填空题1、.【解析】【分析】如图,先利用等腰直角三角形的性质求出,,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点作于,在中,,,,两个同样大小的含角的三角尺,,在中,根据勾股定理得,,,故答案为.【考点】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.2、22【解析】【详解】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得BE=CE,然后求出△ABE的周长=AB+AC,再求出BC的长,然后根据三角形的周长定义计算即可得解.【详解】∵BC边上的垂直平分线DE交BC于点D,交AC于点E,BD=4,∴BE=EC,BC=2BD=8;又∵△ABE的周长为14,∴AB+AE+BE=AB+AE+EC=AB+AC=14,∴△ABC的周长是:AB+AC+BC=14+8=22,故答案是:22.【考点】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的周长,熟记性质是解题的关键.3、48【解析】【分析】先说明△ABC是等边三角形,然后根据等边三角形的性质即可解答.【详解】解:∵∴∠BAC=180°-60°-60°=60°∴∠BAC=∠ABC=∠BCA=60°∴△ABC是等边三角形∴AC=BC=48米.故答案为48.【考点】本题考查了等边三角形的判定和性质,证得△ABC是等边三角形是解答本题的关键.4、(-3,0)【解析】【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴对称的点的坐标为(-3,0).故答案为:(-3,0).【考点】本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5、(5,2)【解析】【分析】根据关于x轴对称的点的横坐标不变,纵坐标互为相反数解答.【详解】解:点A(5,-2)关于x轴对称的点的坐标是(5,2).故答案为:(5,2).【考点】本题考查了关于原点对称的点的坐标,关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.三、解答题1、10【解析】【分析】根据线段垂直平分线的性质可得,据此即可求解.【详解】解:∵是的垂直平分线,∴,∵是的垂直平分线,∴,∴的周长.【考点】此题主要考查了线段垂直平分线的性质等几何知识,线段垂直平分线上的点到线段两端点的距离相等.2、的周长为6.【解析】【分析】要求△AMN的周长,根据题目已知条件无法求出三条边的长,只能把三条边长用其它已知边长来表示,所以需要作辅助线,延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CDN,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.【详解】解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.【考点】此题主要利用等边三角形和等腰三角形的性质来证明三角形全等,构造另一个三角形是解题的关键.3、(1)见详解;(2)成立,理由见详解;(3)见详解【解析】【分析】(1)根据直线,直线得,而,根据等角的余角相等得,然后根据“”可判断;(2)利用,则,得出,然后问题可求证;(3)由题意易得,由(1)(2)易证,则有,然后可得,进而可证,最后问题可得证.【详解】(1)证明:直线,直线,,,,,,在和中,,;解:(2)成立,理由如下:,,,在和中,,;(3)证明:∵△ABF和△ACF均为等边三角形,∴,∴∠BDA=∠AEC=∠BAC=120°,∴,∴,∴,∴,∵,∴,∴(SAS),∴,∴,∴△DFE是等边三角形.【考点】本题主要考查全等三角形的判定与性质及等边三角形的性质与判定,熟练掌握全等三角形的判定与性质及等边三角形的性质与判定是解题的关键.4、(1);(2)为等腰直角三角形,理由见解析.【解析】【分析】(1)根据直角三角形的性质可知CD=BD=AD;(2)连接AD,可证明,则可证得DM=DN,,再利用,可证明,据此解题.【详解】解:(1)中,为BC的中点,即点D到三个顶点的距离相等;(2)为等腰直角三角形,理由如下,证明:连接AD,与中,为等腰直角三角形.【考点】本题考查等腰直角三角形、全等三角形的判定与性质、直角三角形斜边的中线等于斜边的一半等知识,是重要考点,掌握相关知识是解题关键.5、(1)30°;(2)4.【解析】【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年下半年温州大学城市学院汽摩配创新服务中心招考易考易错模拟试题(共500题)试卷后附参考答案
- 吉安市中医院卒中影像学优先检查流程考核
- 湖州市中医院颈椎病针灸推拿诊疗考核
- 汽车 4S 店售后服务现状、问题及对策研究 -以现代 4S 店为例
- 书法专业公司实践试题及答案
- 烘焙职业试题及答案
- 高精度机械零件修复技术-洞察与解读
- 农业产品可追溯体系技术方案
- (2025年)《医疗器械临床试验运行管理与质量管理规范》培训考核试题(含答案)
- 产业园区地下管线布局与建设方案
- 2025年哈市冰城骨干教师考试试题及答案
- 2025年价格鉴证师职业能力水平评价考试(法学基础知识与价格政策法规)练习题及答案二
- 电气装配课件
- 第8课+溺水的预防与急救+课件+2025-2026学年人教版(2024)初中体育与健康七年级全一册
- 2025年入团考试试题库问答题部分及解析答案
- 管理咨询项目考核方案
- 2025管理学原理企业管理试题及答案
- 玉雕理论考试题库及答案
- 灵山县病死禽畜无害化处理项目环评报告
- 2025至2030年中国城市排水系统行业发展潜力分析及投资方向研究报告
- 院感紫外线消毒培训课件
评论
0/150
提交评论