




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中苏教七年级下册期末数学必考知识点试题及解析一、选择题1.下列计算正确的是()A.2a+3b=5ab B.(﹣a2)3=a6C.(a+b)2=a2+b2 D.a3⋅a2=a52.如图,下列各组角中是同位角的是()A.∠1和∠2 B.∠3和∠4 C.∠2和∠4 D.∠1和∠43.在数轴上表示不等式2(x﹣1)≤x+3的解集,正确的是()A. B. C. D.4.将(x+3)2﹣(x﹣1)2分解因式的结果是()A.4(2x+2) B.8x+8 C.8(x+1) D.4(x+1)5.若关于的不等式组无解,则的取值范围为()A. B. C. D.6.下列命题是真命题的是()A.同位角互补则内错角相等 B.同位角互补则同旁内角相等C.同旁内角相等则内错角相等 D.内错角互补则同位角相等7.现有一列数:,,,,…,,(为正整数),规定,,,…,,若,则的值为()A.97 B.98 C.99 D.1008.如图,△ABC中,∠A=40°,将△ABC沿DE折叠,点A落在F处,则∠FDB+∠FEC的度数为()A.140° B.120° C.70° D.80°二、填空题9.计算:2a3•3a2=______.10.命题“如果两个角是直角,那么它们相等”的逆命题是;逆命题是命题(填“真”或“假”).11.如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.12.已知m=2n2+a,n=2m2+a,且m≠n,则m2+2mn+n2的值为_____.13.若方程组的解为x、y,且x+y>0,则k的取值范围是__________.14.如图所示,一个楼梯水平距离为4米,竖直高为3米,若在楼梯上铺地毯,地毯总长至少为______米.15.若等腰三角形的周长为20cm,那么底边x的取值范围是______.16.一副直角三角板叠放如图所示,其中直角边与重合,斜边与在的同侧,现将含角的三角板固定不动,含角的三角板绕顶点A顺时针旋转角,使,则_________.17.计算:(1).(2)18.把下列各式进行因式分解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣16;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4.19.解方程组(1);(2).20.解不等式组:,并把解集在数轴上表示出来.三、解答题21.如图,△ABC中,AD⊥BC、EF⊥BC,垂足分别为D、F,且∠ADG=40°,∠C=50°.(1)DG与AC平行吗?为什么?(2)∠FEC与∠ADG相等吗?为什么?22.某超市投入31500元购进A、B两种饮料共800箱,饮料的成本与销售价如下表:(单位:元/箱)类别成本价销售价A4264B3652(1)该超市购进A、B两种饮料各多少箱?(2)全部售完800箱饮料共盈利多少元?(3)若超市计划盈利16200元,且A类饮料售价不变,则B类饮料销售价至少应定为每箱多少元?23.学校计划向某花卉供应商家定制一批花卉来装扮校园(花盆全部为同一型号),该商家委托某货运公司负责这批花卉的运输工作.该货运公司有甲、乙两种专门运输花卉的货车,已知1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;3辆甲型货车和1辆乙型货车满载一次可运输1900盆花卉.(1)求1辆甲型货车满载一次可运输多少盆花卉,1辆乙型货车满载一次可运输多少盆花卉?(2)学校计划定制6500盆花卉,该货运公司将同时派出甲型货车m辆、乙型货n辆来运输这批花卉,一次性运输完毕,并且每辆货车都满载,请问有哪几个运输方案?24.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且(1)直接写出的面积;(2)如图②,若,作的平分线交于,交于,试说明;(3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.25.如图1,由线段组成的图形像英文字母,称为“形”.(1)如图1,形中,若,则______;(2)如图2,连接形中两点,若,试探求与的数量关系,并说明理由;(3)如图3,在(2)的条件下,且的延长线与的延长线有交点,当点在线段的延长线上从左向右移动的过程中,直接写出与所有可能的数量关系.【参考答案】一、选择题1.D解析:D【分析】A.根据同类项的定义解题;B.根据幂的乘方解题;C.根据完全平方公式解题;D.根据同底数幂的乘法解题.【详解】解:A.2a与3b不是同类项,不能合并,故A错误;B.(﹣a2)3=-a6,故B错误;C.(a+b)2=a2+2ab+b2,故C错误;D.a3⋅a2=a5,故D正确,故选:D.【点睛】本题考查幂的乘方运算、完全平方公式、合并同类项等知识,是基础考点,掌握相关知识是解题关键.2.D解析:D【分析】根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.【详解】A.∠1和∠2是邻补角,不符合题意;B.∠3和∠4是同旁内角,不符合题意;C.∠2和∠4没有关系,不符合题意;D.∠1和∠4是同位角,符合题意;故选D.【点睛】本题考查了同位角的定义,理解同位角的定义是解题的关键.3.B解析:B【分析】先求出不等式的解集,再在数轴上表示解集即可判断.【详解】解2(x﹣1)≤x+3得x≤5在数轴上表示为故选B.【点睛】此题主要考查不等式的解法与表示方法,解题的关键是熟知不等式的性质.4.C解析:C【分析】直接利用平方差公式分解因式即可.【详解】(x+3)2−(x−1)2=[(x+3)+(x−1)][(x+3)−(x−1)]=4(2x+2)=8(x+1).故选C.【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.5.A解析:A【分析】先求出两个不等式的解集,再根据不等式组无解列出关于m的不等式求解即可.【详解】解不等式,得:,解不等式,得:,∵不等式组无解,∴,则,故选:A.【点睛】本题主要考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.B解析:B【解析】【分析】根据平行线的判定和性质逐一判断即可.【详解】解:A、同位角互补则内错角相等,错误,为假命题;应为同位角相等,则两直线平行,则内错角相等;B、同位角互补则同旁内角相等,正确,是真命题;C、同旁内角相等则内错角相等,错误,是假命题;应为同旁内角互补,则两直线平行,则内错角相等;D、内错角互补则同位角相等,错误,是假命题;应为内错角相等,则两直线平行,则同位角相等;故选:B.【点睛】本题考查了真假命题的判断和平行线的判定和性质,熟知平行线的判定和性质是判断的关键.7.B解析:B【分析】先根据题意求出,则,再解方程即可求得【详解】,,,…,解得:经检验,是原方程的解.故选B【点睛】本题考查了找规律问题,整式的加减运算,分式方程,求得是解题的关键.8.D解析:D【分析】由折叠的性质及三角形内角和及外角的性质可求出.【详解】解:∵∠A=40°,∴∠ADE+∠AED=180°﹣∠A=140°,由折叠知,∠ADE=∠FDE,∠AED=∠FED,∴∠ADF+∠AEF=2(∠ADE+∠AED)=280°,∴∠FDB+∠FEC=180°﹣∠ADF+180°﹣∠AEF=360°﹣280°=80°,故选:D.【点睛】本题主要考查折叠的性质、三角形的外角及内角和,关键是根据题意找到角之间的等量关系.二、填空题9.6a5【解析】【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【详解】解:2a3•3a2=6a5.故答案为:6a5.【点睛】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.10.如果两个角相等,那么它们是直角;假.【分析】先交换原命题的题设与结论部分得到其逆命题,然后根据直角的定义判断逆命题的真假.【详解】解:命题“如果两个角是直角,那么它们相等”的逆命题是如果两个角相等,那么它们是直角,此逆命题是假命题.故答案为:如果两个角相等,那么它们是直角;假.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.11.1260【分析】首先根据外角和与外角和及每个外角的度数可得多边形的边数,再根据多边形内角和公式180(n-2)计算出答案.【详解】解:∵多边形的每一个外角都等于,∴它的边数为:,∴它的内角和:,故答案为:.【点睛】此题主要考查了多边形的内角和与外角和,根据多边形的外角和计算出多边形的边数是解题关键.12.【分析】将已知的两个方程相减,求得m+n的值,再将所求代数式分解成完全平方式,再代值计算.【详解】解:∵m=2n2+a,n=2m2+a,∴m﹣n=2n2﹣2m2,∴(m﹣n)+2(m+n)(m﹣n)=0,∴(m﹣n)[1+2(m+n)]=0,∵m≠n,∴1+2(m+n)=0,∴m+n=﹣,∴m2+2mn+n2=(m+n)2=.故答案为:.【点睛】本题主要考查了求代数式的值,因式分解的应用,关键是由已知求得m+n的值.13.k>-3【分析】本题可将两式相加,得到6x+6y=k+3,根据x+y的取值,可得出k的值.【详解】两式相加得:6x+6y=k+3,∵x+y>0∴6x+6y=6(x+y)>0,即k+3>0,∴k>-3,故答案为:k>-3.【点睛】本题考查的是二元一次方程的解的性质,通过化简得到x+y的形式,再根据x+y>0求得k的取值.14.【解析】【分析】把楼梯的水平线段向下平移,竖直线段向右平移可得地毯长度为水平距离与高的和.【详解】把楼梯的水平线段向下平移,竖直线段向右平移可得地毯长度至少需3+4=7米.故答案为:7.【点睛】此题主要考查了生活中的平移及平移的性质,根据已知得出地毯的长度应等于水平距离与高的和是解题关键.15.【分析】设等腰三角形的腰长为a,根据等腰三角形的性质及三角形的三边关系进行求解即可.【详解】解:设等腰三角形的腰长为a,根据题意得:,根据三角形的三边关系得:,解得,;故答案为.解析:【分析】设等腰三角形的腰长为a,根据等腰三角形的性质及三角形的三边关系进行求解即可.【详解】解:设等腰三角形的腰长为a,根据题意得:,根据三角形的三边关系得:,解得,;故答案为.【点睛】本题主要考查等腰三角形的性质、三角形的三边关系及一元一次不等式组的解法,熟练掌握等腰三角形的性质、三角形的三边关系及一元一次不等式组的解法是解题的关键.16.或【分析】先根据题意画出图形,再根据平行线的判定、旋转的性质即可得.【详解】解:由题意,有以下两种情况:(1)如图,当,且点位于两侧时,,,此时;(2)如图,当,且点位于同侧时,解析:或【分析】先根据题意画出图形,再根据平行线的判定、旋转的性质即可得.【详解】解:由题意,有以下两种情况:(1)如图,当,且点位于两侧时,,,此时;(2)如图,当,且点位于同侧时,,,此时;综上,或,故答案为:或.【点睛】本题考查了平行线的判定、旋转的性质等知识点,正确分两种情况讨论是解题关键.17.(1);(2)-4【分析】(1)根据积的乘方、同底数幂的乘除法可以解答本题;(2)根据有理数的乘方、负整数指数幂、零指数幂、绝对值可以解答本题.【详解】解:(1)(﹣ab2)3•(﹣9a3解析:(1);(2)-4【分析】(1)根据积的乘方、同底数幂的乘除法可以解答本题;(2)根据有理数的乘方、负整数指数幂、零指数幂、绝对值可以解答本题.【详解】解:(1)(﹣ab2)3•(﹣9a3bc)÷(﹣3a3b5)=(﹣a3b6)•(﹣9a3bc)÷(﹣3a3b5)=﹣3a3b2c;(2)﹣22+﹣(π﹣5)0﹣|﹣3|=﹣4+4﹣1﹣3=﹣4.【点睛】本题考查了负整数指数幂、零指数幂、积的乘方、同底数幂的乘除法,解题的关键是熟练掌握运算法则进行解题.18.(1);(2);(3);(4)【分析】(1)利用提公因式法因式分解即可;(2)先提出负号,再利用完全平方公式法因式分解即可;(3)先提公因式,再利用完全平方公式法因式分解即可;(4)先运用解析:(1);(2);(3);(4)【分析】(1)利用提公因式法因式分解即可;(2)先提出负号,再利用完全平方公式法因式分解即可;(3)先提公因式,再利用完全平方公式法因式分解即可;(4)先运用平方差公式法分解为,再运用平方差公式法分解,即可求解.【详解】解:(1)2(x﹣y)﹣(x﹣y)2;(2)﹣x2+8x﹣16;(3)8m3n+40m2n2+50mn3;(4)a4﹣b4【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法——提公因式法、公式法、分组分解法、十字相乘法是解题的关键.19.(1);(2).【分析】(1)利用代入消元法解题;(2)先去分母,去括号,将原二元一次方程组化简,再利用加减消元法解题.【详解】解:(1)由①得,③,把③代入②得,把代入③得,解析:(1);(2).【分析】(1)利用代入消元法解题;(2)先去分母,去括号,将原二元一次方程组化简,再利用加减消元法解题.【详解】解:(1)由①得,③,把③代入②得,把代入③得,;(2)由①得,③由②得,即④③④得把代入③得.【点睛】本题考查二元一次方程组的解法,是重要考点,掌握相关知识是解题关键.20.,见解析【分析】先分别求出两个不等式的解集,可得到不等式组的解集,然后在数轴上表示出来,即可.【详解】解:由①得:,由②得:,∴不等式组的解集为:.如图,把解集在数轴上表示出来为.解析:,见解析【分析】先分别求出两个不等式的解集,可得到不等式组的解集,然后在数轴上表示出来,即可.【详解】解:由①得:,由②得:,∴不等式组的解集为:.如图,把解集在数轴上表示出来为.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解求不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.三、解答题21.(1)平行,证明见解析;(2)相等,证明见解析.【分析】(1)根据AD⊥BC可得∠ADB=90°,进而可得∠BDG=∠C,即可得DG与AC平行;(2)根据EF⊥BC,可得∠EFC=90°,由∠解析:(1)平行,证明见解析;(2)相等,证明见解析.【分析】(1)根据AD⊥BC可得∠ADB=90°,进而可得∠BDG=∠C,即可得DG与AC平行;(2)根据EF⊥BC,可得∠EFC=90°,由∠C=50°.可得∠FEC=40°,进而可得∠FEC与∠ADG相等.【详解】解:(1)DG与AC平行,理由如下:∵AD⊥BC,∴∠ADB=90°,∵∠ADG=40°,∴∠BDG=90°﹣40°=50°,∵∠C=50°,∴∠BDG=∠C,∴DG//AC;(2)∠FEC与∠ADG相等,理由如下:∵EF⊥BC,∴∠EFC=90°,∵∠C=50°.∴∠FEC=90°﹣50°=40°,∵∠ADG=40°,∴∠FEC=∠ADG.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.22.(1)购进A型饮料450箱,购进B型饮料350箱;(2)全部售完800箱饮料共盈利15500元;(3)B类饮料销售价至少定为每箱54元【分析】(1)设购进A型饮料x箱,购进B型饮料y箱,根据题意解析:(1)购进A型饮料450箱,购进B型饮料350箱;(2)全部售完800箱饮料共盈利15500元;(3)B类饮料销售价至少定为每箱54元【分析】(1)设购进A型饮料x箱,购进B型饮料y箱,根据题意列出方程组解答即可;(2)根据利润的公式解答即可;(3)设B类饮料销售价定为每箱a元,根据题意列出不等式解答即可.【详解】解:(1)设购进A型饮料x箱,购进B型饮料y箱,根据题意得解得答:购进A型饮料450箱,购进B型饮料350箱.(2)(64﹣42)×450+(52﹣36)×350=15500(元)答:全部售完800箱饮料共盈利15500元;(3)设B类饮料销售价定为每箱a元,根据题意得(64﹣42)×450+(a﹣36)×350≥16200解得a≥54答:B类饮料销售价至少定为每箱54元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是根据数量关系列出方程(方程组、不等式或不等式组).23.(1)1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉;(2)共有三种运输方案:①1辆甲型货车,15辆乙型货车;②5辆甲型货车,10辆乙型货车;③9辆甲型货车,5辆乙型解析:(1)1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉;(2)共有三种运输方案:①1辆甲型货车,15辆乙型货车;②5辆甲型货车,10辆乙型货车;③9辆甲型货车,5辆乙型货车.【分析】(1)设1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,根据题目中已知的两种数量关系,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据(1)所求结果,可得,结合m,n为正整数,即可得出各运输方案.【详解】解:(1)1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,依题意得:,解得.答:甲型货车每辆可装载500盆花卉,乙型货车每辆可装载400盆花卉.(2)由题意得:,∴.∵m,n为正整数,∴或或.∴共有三种运输方案:①1辆甲型货车,15辆乙型货车;②5辆甲型货车,10辆乙型货车;③9辆甲型货车,5辆乙型货车.【点睛】本题考查了二元一次方程组以及二元一次方程的整数解应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出二元一次方程并求出整数解.24.(1)3;(2)见解析;(3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3;(2)见解析;(3)见解析【详解】分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.详解:(1)S△BCD=CD•OC=×3×2=3.(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务收例如比进
- 护理流程规范与标准化测试
- 庄园花园设计灵感
- 2025专升本审计试题及答案
- 2025重庆秀山自治县教育卫生事业单位定向公开招聘139人笔试备考试题及答案解析
- 2025执业药师《药学综合知识与技能》提分攻略
- 工控编程自动化测试规程
- 2025医学培训师招聘笔试题库及答案
- 2025夏季广西防城港东兴国民村镇银行招聘笔试参考题库附答案解析
- 2025年消化内科消化系统疾病诊治能力测试卷答案及解析
- 院感惩罚管理制度
- 江苏省泵站技术管理办法
- 小学生科普讲堂课件-彩虹的秘密
- 心理健康和生命教育
- 进口铁矿石的报关流程
- 新苏教版一年级数学上册第一单元《练习一》教案
- 冀教版英语五年级上册单词表
- 医院感染在眼科医疗中的预防与控制
- 园区废气与噪音综合治理管理制度
- 2025华电(海西)新能源限公司面向华电系统内外公开招聘高频重点提升(共500题)附带答案详解
- 医疗器械冷链培训
评论
0/150
提交评论