




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
规律探究—图形的变化1.(2025春•重庆期中)将一些完全相同的棋子按如图所示的规律摆放,第①个图中有4颗棋子,第②个图中有7颗棋子,第③个图中有12颗棋子,,按此规律,则第⑨个图中棋子的颗数是A.52 B.67 C.84 D.1012.(2025春•泸县校级期中)如图,在△中,,,,是,2,的中点,则△中最短边的长为A. B. C. D.3.(2025•北碚区校级模拟)汉字文化正在走进人们的日常消费生活.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点依此规律则,图⑧中共有圆点的个数是A.63 B.75 C.88 D.1024.(2025•新野县三模)如图,在一张白纸上画1条直线,最多能把白纸分成2部分如图(1),画2条直线,最多能把白纸分成4部分如图(2),画3条直线,最多能把白纸分成7部分如图(3),当在一张白纸上画20条直线,最多能把白纸分成部分.A.190 B.191 C.210 D.2115.(2024•景谷县模拟)观察如图,第1个图形中有1个正方形,第2个图形中有3个正方形,第3个图形中有6个正方形,,依此规律,第100个图形中正方形的个数是A.5000 B.5020 C.5050 D.51006.(2025•明水县模拟)根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第30个图中平行四边形的个数是.7.(2025•盘山县二模)如图,在△中,,,,是、2、的中点,则△中最短边的长度为.8.(2025秋•城阳区校级月考)用同样大小的黑色棋子按如图表示的方式摆图形,按照这样的规律摆下去,则第100个图形需棋子枚.9.(2025秋•青羊区校级期中)如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依次类推,可求得阴影部分的面积是,受此启发,的值为,类比探究的值为.10.(2025秋•南海区期中)如图,中,,,边上的高,点、、分别在边、、上,且四边形为矩形,,点、、分别在边、、上,且四边形为矩形,,按此规律操作下去,则线段的长度为.11.(2025秋•思南县校级月考)如图,已知,点、、在射线上,点、、在射线上;△、△、△均为等边三角形.若,则△的边长为.12.(2025•洪泽区二模)将2025个边长为1的正方形按如图所示的方式排列,点,,,,,和点,,,,是正方形的顶点,连接,,,,,分别交正方形的边,,,,于点,,,,,则长为.13.(2025秋•高新区月考)如图:中,,,,把边长分别为,,,的个正方形依次放在中:第一个正方形的顶点分别放在的各边上;第二个正方形的顶点分别放在△的各边上,其他正方形依次放入,则第2025个正方形的边长为.
14.(2025•西城区校级开学)现有一块圆形蛋糕,用刀把它竖着切开.用表示刀切下去出现的最多的蛋糕块数,2,3,.显然,1刀切下去蛋糕分为两块,记为(1);2刀切下去蛋糕最多被分为4块,记为(2);那么(3);与的等量关系为;(用含的式子表示).15.(2025秋•武侯区校级月考)如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)受此启发,得到.(2)迁移应用:计算.16.(2024•南宁模拟)如图所示,扇形的圆心角为,正方形的边长为2,顶点,在线段上,顶点在弧上,顶点在线段上,在边上取点,以为边长继续作正方形,使得点在线段上,点在线段上,,依此规律,继续作正方形,则.17.(2024秋•灌南县期中)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为边长值构造正方形:
再分别依次从左到右取2个、3个、4个、5个正方形拼成如下长方形并记为①、②、③、④、相应长方形的周长如下表所示:序号①②③④周长610仔细观察图形,上表中的,.若按此规律继续作长方形,则序号为⑧的长方形周长是.18.(2024秋•简阳市期末)图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为.如果图中的圆圈共有11层,请问:自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,,则最底层中间这个圆圈中的数是;自上往下,在每个圆圈中按图4的方式填上一串连续的整数,,,,,则所有圆圈中各数之和为.19.(2024秋•新化县期中)我班数学兴趣小组几名同学用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案如图所示:那么第2024个图案中有白色纸片张.20.(2024秋•巴中月考)如图是用火柴棍摆成边长分别是1、2、3根火柴棍时的正方形,当边长为根火柴棍时,若摆出的正方形所用的火柴棍的根数为,则(用含的代数式表示,为正整数).21.(2024•青羊区模拟)用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第2024个图形需根火柴棒.22.(2024•广东模拟)如图,观察每一个图中白色正方形的排列规律,则第个图中白色正方形有个.23.(2024秋•新津县期末)将一些棋子按如图所示的规律摆放,请仔细观察,第个图形有个棋子.(用含的代数式表示)24.(2024秋•河北区期末)图1方格内的每一个符号各代表0,1,2,3,,9十个数字中的一个数字,每横行三个符号自左至右看成一个三位数,若图1中的四个横行表示的三位数是403,675,902,831,但不知它们对应的位置,则按照图1中的规律,2009应是图2中的.25.(2024秋•怀柔区期末)国强同学喜欢用黑色棋子摆放在正多边形的边上来研究数的规律.请你观察下面表格中棋子的摆放规律,并回答下面问题:三角形第个三角形棋子个数369正方形第个正方形棋子个数4812正多边形第个正多边形棋子个数381524(1)通过观察、归纳发现可以分别用含字母的整数)的代数式表示、、.则,,.(2)下列数中既是三角形中的棋子数又是正方形中的棋子数的是..26.(2025•肇东市校级模拟)如图,圆桌周围有20个箱子,按顺时针方向编号,小明先在1号箱子中丢入一颗红球,然后沿着圆桌按顺时针方向行走,每经过一个箱子丢一颗球,规则如下①若前一个箱子丢红球,则下一个箱子就丢绿球.②若前一个箱子丢绿球,则下一个箱子就丢白球.③若前一个箱子丢白球,则下一个箱子就丢红球.他沿着圆周走了2025圈,求4号箱内有颗红球.27.(2025秋•江阴市校级月考)如图①,②,③,④,,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第8个“广”字中的棋子个数是.28.(2025秋•洪山区期中)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现这样的一组数:1,1,2,3,5,8,13,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长,依次构造一组正方形,再分别从左到右取2个,3个,4个,5个正方形拼成如图所示的长方形,并记为①,②,③,④.相应长方形的周长如表所示.若按此规律继续作长方形,则序号为⑪的长方形周长是.序号①②③④周长610162629.(2025春•海淀区校级期末)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为,第2幅图形中“●”的个数为,第3幅图形中“●”的个数为,,以此类推,则的值为.30.(2024•新宾县模拟)连接正方形四边中点所构成的正方形,我们称其原正方形的中点正方形,如图,已知正方形的中点正方形是,再作正方形的中点正方形,这样不断地作下去,第次所做的中点正方形,若正方形的边长为1,则第10次所作的中点正方形边长为,若设中点正方形的面积为,则.
1.(2025春•重庆期中)将一些完全相同的棋子按如图所示的规律摆放,第①个图中有4颗棋子,第②个图中有7颗棋子,第③个图中有12颗棋子,,按此规律,则第⑨个图中棋子的颗数是A.52 B.67 C.84 D.101【解答】解:第①个图形中,棋子数量为;第②个图形中,棋子数量为;第③个图形中,棋子数量为;以此类推,第个图形中,棋子数量为;第⑨个图形中共有棋子的颗数是,故选:.2.(2025春•泸县校级期中)如图,在△中,,,,是,2,的中点,则△中最短边的长为A. B. C. D.【解答】解:在△中,,,,是、2、的中点,可知:△中最短边的长度为,△中最短边的长度为,△中最短边的长度为,所以△中最短边的长度为,所以,则△中最短边的长度为.故选:.3.(2025•北碚区校级模拟)汉字文化正在走进人们的日常消费生活.下列图形都是由同样大小的圆点和线段按照一定的规律排列组成的篆书简化“汉”字,其中,图①中共有12个圆点,图②中共有18个圆点,图③中共有25个圆点,图④中共有33个圆点依此规律则,图⑧中共有圆点的个数是A.63 B.75 C.88 D.102【解答】解:在图①中,圆点个数为个.在图②中,圆点个数为个.在图③中,圆点个数为个.在图④中,圆点个数为个..以次类推,在图⑧中,圆点个数为.故选:.4.(2025•新野县三模)如图,在一张白纸上画1条直线,最多能把白纸分成2部分如图(1),画2条直线,最多能把白纸分成4部分如图(2),画3条直线,最多能把白纸分成7部分如图(3),当在一张白纸上画20条直线,最多能把白纸分成部分.A.190 B.191 C.210 D.211【解答】解:根据题意得:,;,;,;,,以上式子相加整理得,.条直线最多能把白纸分为:部分.故选:.5.(2024•景谷县模拟)观察如图,第1个图形中有1个正方形,第2个图形中有3个正方形,第3个图形中有6个正方形,,依此规律,第100个图形中正方形的个数是A.5000 B.5020 C.5050 D.5100【解答】解:第1个:1,第2个:,第3个:,第4个:,第100个:.故选:.二.填空题(共31小题)6.(2025•明水县模拟)根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第30个图中平行四边形的个数是2790.【解答】解:第一个图中平行四边形的个数是个,第二个图中平行四边形的个数是,第三个图中平行四边形的个数是,第个图中平行四边形的个数是,因此第30个图中平行四边形的个数是个;故答案为:2790.7.(2025•盘山县二模)如图,在△中,,,,是、2、的中点,则△中最短边的长度为.【解答】解:△中,最短边为:;△中,最短边为:;△中,最短边为:;△中,最短边为:;△中,最短边为:.8.(2025秋•城阳区校级月考)用同样大小的黑色棋子按如图表示的方式摆图形,按照这样的规律摆下去,则第100个图形需棋子301枚.【解答】解:第一个图,点数4,第二个图,点数,第三个图,点数,猜想第四个图,点数,第五个图,点数,.第个图,点数,第100个图形需棋子:(枚,故答案为:301.9.(2025秋•青羊区校级期中)如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依次类推,可求得阴影部分的面积是,受此启发,的值为,类比探究的值为.【解答】解:根据题意可知:,令,则,故有:,即,.故答案为:,.10.(2025秋•南海区期中)如图,中,,,边上的高,点、、分别在边、、上,且四边形为矩形,,点、、分别在边、、上,且四边形为矩形,,按此规律操作下去,则线段的长度为.【解答】解:,,设,则,,四边形为矩形,,△,,解得:,,,,和△的相似比是,同理:△和△的相似比是,和△的相似比是,依此类推:和△的相似比是,.故答案为:.11.(2025秋•思南县校级月考)如图,已知,点、、在射线上,点、、在射线上;△、△、△均为等边三角形.若,则△的边长为.【解答】解:△为等边三角形,,,,,,,同理可得,,,,.则△的边长为.故答案为:.13.(2025•洪泽区二模)将2025个边长为1的正方形按如图所示的方式排列,点,,,,,和点,,,,是正方形的顶点,连接,,,,,分别交正方形的边,,,,于点,,,,,则长为.【解答】解:由题意可得△△,,正方形的边长都为1,.同理可得△△,,.故答案为.14.(2025秋•高新区月考)如图:中,,,,把边长分别为,,,的个正方形依次放在中:第一个正方形的顶点分别放在的各边上;第二个正方形的顶点分别放在△的各边上,其他正方形依次放入,则第2025个正方形的边长为.【解答】解:如图,四边形是正方形,则,,,即,,同理:,,..故答案为:.15.(2025•西城区校级开学)现有一块圆形蛋糕,用刀把它竖着切开.用表示刀切下去出现的最多的蛋糕块数,2,3,.显然,1刀切下去蛋糕分为两块,记为(1);2刀切下去蛋糕最多被分为4块,记为(2);那么(3)7;与的等量关系为;(用含的式子表示).【解答】解:当切1刀时,块数为;当切2刀时,块数为;当切3刀时,块数为;当切4刀时,块数为;当切5刀时,块数为;当切刀时,块数.当切刀时,块数.故答案为:7;;.16.(2025秋•武侯区校级月考)如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)受此启发,得到.(2)迁移应用:计算.【解答】解:(1)根据题意可知:,故答案为:;(2)设,则,,化简,得,所以.故答案为:.17.(2024•南宁模拟)如图所示,扇形的圆心角为,正方形的边长为2,顶点,在线段上,顶点在弧上,顶点在线段上,在边上取点,以为边长继续作正方形,使得点在线段上,点在线段上,,依此规律,继续作正方形,则..【解答】解:,△为等腰直角三角形,.正方形的边长为2,.,同理,可得出:,,.故答案为.18.(2024秋•灌南县期中)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为边长值构造正方形:再分别依次从左到右取2个、3个、4个、5个正方形拼成如下长方形并记为①、②、③、④、相应长方形的周长如下表所示:序号①②③④周长610仔细观察图形,上表中的16,.若按此规律继续作长方形,则序号为⑧的长方形周长是.【解答】解:由分析知:第1个长方形的周长为;第2个长方形的周长为;第3个长方形的周长为;第4个长方形的周长为;第5个长方形的周长为;第6个长方形的周长为;第7个长方形的周长为;第8个长方形的周长为.故答案为:16、26、178.19.(2024秋•简阳市期末)图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为.如果图中的圆圈共有11层,请问:自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,,则最底层中间这个圆圈中的数是61;自上往下,在每个圆圈中按图4的方式填上一串连续的整数,,,,,则所有圆圈中各数之和为.【解答】解:第10层最后一个数为:,所以第11层中间一个数为:,图4中所有圆圈的个数为:个数,其中23个负数,1个0,42个正数,所以图4中所有圆圈中各数之和.故答案为:61;627.20.(2024秋•新化县期中)我班数学兴趣小组几名同学用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案如图所示:那么第2024个图案中有白色纸片6049张.【解答】解:由题目得,第1个图案中,白色纸片的个数为4;第2个图案中,白色纸片的个数为7;第3个图案中,白色纸片的个数为10;发现第5个图案中,白色纸片的个数为,进一步发现规律:第个图案中,白色纸片的个数为;当时,图案中有白色纸片为,故答案为:6049.21.(2024秋•巴中月考)如图是用火柴棍摆成边长分别是1、2、3根火柴棍时的正方形,当边长为根火柴棍时,若摆出的正方形所用的火柴棍的根数为,则(用含的代数式表示,为正整数).【解答】解:当边长为1根火柴棍时,设摆出的正方形所用的火柴棍的根数为;当边长为2根火柴棍时,设摆出的正方形所用的火柴棍的根数为;当边长为3根火柴棍时,设摆出的正方形所用的火柴棍的根数为;;当边长为根火柴棍时,设摆出的正方形所用的火柴棍的根数为.故答案为:.22.(2024•青羊区模拟)用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第2024个图形需12096根火柴棒.【解答】解:搭第1个图形需12根火柴;搭第2个图形需根;搭第3个图形需根;搭第个图形需根;搭第2024个图形需根火柴棒.故答案为:12096.23.(2024•广东模拟)如图,观察每一个图中白色正方形的排列规律,则第个图中白色正方形有个.【解答】解:时,有个,时,有个,时,有,显然不是的一次函数,设,由题意:,解得,,故答案为:.24.(2024秋•新津县期末)将一些棋子按如图所示的规律摆放,请仔细观察,第个图形有个棋子.(用含的代数式表示)【解答】解:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,,,,,第个图形有:个小圆,故答案为:.25.(2024秋•河北区期末)图1方格内的每一个符号各代表0,1,2,3,,9十个数字中的一个数字,每横行三个符号自左至右看成一个三位数,若图1中的四个横行表示的三位数是403,675,902,831,但不知它们对应的位置,则按照图1中的规律,2009应是图2中的.【解答】解:由图案和提供的数据可知:403,902,第2位都是0,所以只有第2行和第4行是这两个数,第2行和第4行的末尾数字图形是3或者2,而831是其中一个数,第1行和第3行只有第一行的第2个图形是前面的那个3或2,所以第1行的数字是831,第2行是902,第3行是675,第4行是403.则2009应是图2中的.故答案为:.26.(2024秋•怀柔区期末)国强同学喜欢用黑色棋子摆放在正多边形的边上来研究数的规律.请你观察下面表格中棋子的摆放规律,并回答下面问题:三角形第个三角形棋子个数369正方形第个正方形棋子个数4812正多边形第个正多边形棋子个数381524(1)通过观察、归纳发现可以分别用含字母的整数)的代数式表示、、.则,,.(2)下列数中既是三角形中的棋子数又是正方形中的棋子数的是..【解答】解:(1)第一个图形有3个棋子,第二个图形有6个棋子,第三个图形有9个棋子,,第个图形有个棋子;第一个图形有4个棋子,第二个图形有8个棋子,第三个图形有12个棋子,,第个图形有个棋子,第一个图形有3个棋子,第二个图形有8个棋子,,第三个图形有15个棋子,,第四个图形有24个棋子,,,第个图形有个棋子;(2)三角形中的棋子数符合,正方形中的棋子数符合,既是三角形中的棋子数又是正方形中的棋子数是12的倍数,、2024、2024、2024四个数中只有2024是12的倍数,既是三角形中的棋子数又是正方形中的棋子数的是2024.故答案为:(1),,;(2).27.(2025•肇东市校级模拟)如图,圆桌周围有20个箱子,按顺时针方向编号,小明先在1号箱子中丢入一颗红球,然后沿着圆桌按顺时针方向行走,每经过一个箱子丢一颗球,规则如下①若前一个箱子丢红球,则下一个箱子就丢绿球.②若前一个箱子丢绿球,则下一个箱子就丢白球.③若前一个箱子丢白球,则下一个箱子就丢红球.他沿着圆周走了2025圈,求4号箱内有674颗红球.【解答】解:根据题意,可知第1圈红球在1、4、7、10、13、16、19号箱内,第2圈红球在2、5、8、11、14、17、20号箱内,第3圈红球在3、6、9、12、15、18号箱内,第4圈红球在1、4、7、10、13、16、19号箱内,且第1、4、7、圈会在4号箱内丢一颗红球,所以为正整数)解得.故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海堤工程质量管理方案
- 2025版司法局《民事起诉状(遗赠抚养协议纠纷)》民事类法律文书(空白模板)
- 抚州财务优化咨询方案
- 氮肥生产安全管理规范分析报告
- 机械类网络营销方案
- 建筑墙砖加固方案设计
- 涂料行业业务咨询方案
- 110主变安装施工方案
- 心理咨询班会方案
- 金安脆桃营销策划方案
- 老年人体检分析报告总结
- 用绝对值的几何意义来解题市公开课一等奖省赛课微课金奖课件
- 第4课《用联系的观点看问题》第2框《在和谐共处中实现人生发展》-【中职专用】《哲学与人生》同步课堂课件
- 人工智能在个性化健康风险评估中的应用
- 计量安全防护
- DB35T 2054-2022 智慧消防 信息平台通用技术要求
- 食品生物技术原理课件
- 制药工程专业导论
- 北京印刷学院《思想道德与法治》课教育教学情况管理类附有答案
- 初中团员培训课件
- 马克思主义基本原理概论全部-课件
评论
0/150
提交评论