




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江西省高安市高安二中学数学九年级第一学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,四边形ABCD的对角线AC,BD相交于点O,且将这个四边形分成①②③④四个三角形.若,则下列结论中一定正确的是()A.①和②相似 B.①和③相似 C.①和④相似 D.③和④相似2.将抛物线通过一次平移可得到抛物线.对这一平移过程描述正确的是()A.沿x轴向右平移3个单位长度 B.沿x轴向左平移3个单位长度C.沿y轴向上平移3个单位长度 D.沿y轴向下平移3个单位长度3.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180° B.经过有交通信号的路口,遇到红灯C.太阳从东方升起 D.任意一个五边形的外角和等于540°4.下列事件是必然事件的是()A.通常加热到100℃,水沸腾B.抛一枚硬币,正面朝上C.明天会下雨D.经过城市中某一有交通信号灯的路口,恰好遇到红灯5.在下列命题中,正确的是A.对角线相等的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形6.数据3,1,x,4,5,2的众数与平均数相等,则x的值是()A.2 B.3 C.4 D.57.方程x2-x-1=0的根是(
)A., B.,C., D.没有实数根8.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.18 B.16 C.19.已知关于x的方程x2+ax﹣6=0的一个根是2,则a的值是()A.﹣1 B.0 C.1 D.210.一元二次方程的两个根为,则的值是()A.10 B.9 C.8 D.7二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为_____.12.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.13.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________.14.若是关于的方程的一个根,则的值为_________________.15.比较sin30°、sin45°的大小,并用“<”连接为_____.16.若m是关于x的方程x2-2x-3=0的解,则代数式4m-2m2+2的值是______.17.已知中,,,,,垂足为点,以点为圆心作,使得点在外,且点在内,设的半径为,那么的取值范围是______.18.用配方法解一元二次方程,配方后的方程为,则n的值为______.三、解答题(共66分)19.(10分)如图,一次函数与反比例函数的图象相交于A(2,2),B(n,4)两点,连接OA、OB.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)在直角坐标系中,是否存在一点P,使以P、A、O、B为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.20.(6分)将一元二次方程化为一般形式,并求出根的判别式的值.21.(6分)如图,抛物线与轴交于、两点,与轴交于点,且,.(1)求抛物线的解析式;(2)已知抛物线上点的横坐标为,在抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由.22.(8分)(1)问题发现:如图1,在等腰直角三角形中,,将边绕点顺时针旋转90°得到线段,连接,则的面积为__________;(请用含的式子表示的面积;提示:过点作边上的高)(2)类比探究:如图2,在一般的中,,将边绕点顺时针旋转90°得到线段,连接.(1)中的结论是否成立,若成立,请说明理由.(3)拓展应用:如图3,在等腰三角形中,,将边绕点顺时针旋转90°得到线段,连接.试直接用含的式子表示的面积.(不写探究过程)23.(8分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.24.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连结AD(AD<AB),将线段AD绕点A逆时针旋转90°,得到线段AE,连结DE,CE,BD.(1)请根据题意补全图1;(2)猜测BD和CE的数量关系并证明;(3)作射线BD,CE交于点P,把△ADE绕点A旋转,当∠EAC=90°,AB=2,AD=1时,补全图形,直接写出PB的长.25.(10分)为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,将学生的成绩分为四个等级,并将结果绘制成不完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)参加征文比赛的学生共有人;(2)补全条形统计图;(3)在扇形统计图中,表示等级的扇形的圆心角为__图中;(4)学校决定从本次比赛获得等级的学生中选出两名去参加市征文比赛,已知等级中有男生一名,女生两名,请用列表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率.26.(10分)已知:在同一平面直角坐标系中,一次函数与二次函数的图象交于点.(1)求,的值;(2)求二次函数图象的对称轴和顶点坐标.
参考答案一、选择题(每小题3分,共30分)1、B【解析】由题图可知,,由,可得即可得出【详解】由题图可知,,结合,可得.故选B.当题中所给条件中有两个三角形的两边成比例时,通常考虑利用“两边成比例且夹角相等”的判定方法判定两个三角形相似一定要记准相等的角是两边的“夹角”,否则,结论不成立(类似判定三角形全等的方法“SAS").2、A【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,确定平移方向即可得解.【详解】解:抛物线的顶点坐标为(0,−2),
抛物线的顶点坐标为(3,-2),
所以,向右平移3个单位,可以由抛物线平移得到抛物线.
故选:A.本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.3、B【解析】根据事件发生的可能性大小判断相应事件的类型.【详解】A.任意画一个三角形,其内角和为180°是必然事件;B.经过有交通信号的路口,遇到红灯是随机事件;C.太阳从东方升起是必然事件;D.任意一个五边形的外角和等于540°是不可能事件.故选B.本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、A【解析】解:A.通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B.抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C.明天会下雨,是随机事件,故C选项不符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.故选A.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、C【分析】根据平行四边形、矩形、菱形、正方形的判定方法逐项分析解答即可.【详解】解:A、∵等腰梯形的对角线相等,但不是平行四边形,∴应对角线相等的四边形不一定是平行四边形,故不正确;B、∵有一个角是直角的四边形可能是矩形、直角梯形,∴有一个角是直角的四边形不一定是矩形,故不正确;C、∵有一组邻边相等的平行四边形是菱形,故正确;D、对角线互相垂直平分的四边形是菱形,故不正确.故选:C.本题考查了平行四边形、矩形、菱形、正方形的判定方法的理解,熟练掌握平行四边形、矩形、菱形、正方形的判定方法的判定方法是解答本题的关键.6、B【分析】先根据平均数的计算方法求出平均数,根据众数的确定方法判断出众数可能值,最后根据众数和平均数相等,即可得出结论.【详解】根据题意得,数据3,1,x,4,5,2的平均数为(3+1+x+4+5+2)÷6=(15+x)÷6=2+,数据3,1,x,4,5,2的众数为1或2或3或4或5,∴x=1或2或3或4或5,∵数据3,1,x,4,5,2的众数与平均数相等,∴2+=1或2或3或4或5,∴x=﹣9或﹣3或3或9或15,∴x=3,故选:B.此题主要考查了众数的确定方法,平均数的计算方法,解一元一次方程,掌握平均数的求法是解本题的关键.7、C【解析】先求出根的判别式b2-4ac=(-1)2-4×1×(-1)=5>0,然后根据一元二次方程的求根公式为,求出这个方程的根是x==.故选C.8、B【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是16故选B.考点:简单概率计算.9、C【解析】一元二次方程的根就是能够使方程左右两边相等的未知数的值.利用方程解的定义将x=2代入方程式即可求解.【详解】解:将x=2代入x2+ax﹣6=2,得22+2a﹣6=2.解得a=2.故选C.本题考查的是一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题.10、D【分析】利用方程根的定义可求得,再利用根与系数的关系即可求解.【详解】为一元二次方程的根,,.根据题意得,,.故选:D.本题主要考查了一元二次方程的解,根与系数的关系以及求代数式的值,熟练掌握根与系数的关系,是解题的关键.二、填空题(每小题3分,共24分)11、【分析】由勾股定理求出BC的长,再证明四边形DMAN是矩形,可得MN=AD,根据垂线段最短和三角形面积即可解决问题.【详解】解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12、【详解】解:设E(x,x),∴B(2,x+2),∵反比例函数(k≠0,x>0)的图象过点B.E.∴x2=2(x+2),,(舍去),,故答案为13、1【解析】连接OA,OB,OC利用小三角形的面积和等于大三角形的面积即可解答【详解】解:连接OA,OB,OC,则点O到三边的距离就是△AOC,△BOC,△AOB的高线,设到三边的距离是x,则三个三角形的面积的和是:AC•x+BC•x+AB•x=AC•BC,由题意可得:AC=4,BC=3,AB=5∴×4•x+×3•x+×5•x=×3×4解得:x=1.故答案为:1.本题中点到三边的距离就是直角三角形的内切圆的半径长,内切圆的半径=.14、【分析】将x=2代入方程,列出含字母a的方程,求a值即可.【详解】解:∵x=2是方程的一个根,∴,解得,a=.故答案为:.本题考查方程解的定义,理解定义,方程的解是使等式成立的未知数的值是解答此题的关键.15、<.【解析】直接利用特殊角的三角函数值代入求出答案.【详解】解:∵sin30°=12、sin45°=22,
∴sin30°<sin45°.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.16、-1【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2-2x-3=0的解,
∴m2-2m-3=0,
∴m2-2m=3,
∴1m-2m2+2
=-2(m2-2m)+2
=-2×3+2
=-1.
故答案为:-1.本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.17、【分析】先根据勾股定理求出AB的长,进而得出CD的长,再求出AD,BD的长,由点与圆的位置关系即可得出结论.【详解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,
∴AB==1.
∵CD⊥AB,∴CD=.
∵AD•BD=CD2,
设AD=x,BD=1-x,得x(1-x)=,又AD>BD,解得x1=(舍去),x2=.∴AD=,BD=.
∵点A在圆外,点B在圆内,∴BD<r<AD,
∴r的范围是,
故答案为:.本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.18、7【分析】根据配方法,先移项,然后两边同时加上4,即可求出n的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤.三、解答题(共66分)19、(1)一次函数的解析式为,反比例函数的解析式为;(2)的面积为;(3)存在,点的坐标为(-3,-6),(1,-2)(3,6).【分析】(1)根据反比例函数图象上点的坐标特征可求出k2和n的值,可得反比例函数解析式,再利用待定系数法即可求出一次函数的解析式;(2)设一次函数与轴交于点,过点、分别向轴作垂线,垂足为点、,令x=0,可求出点C的坐标,根据即可得答案;(3)分OA、OB、AB为对角线三种情况,根据A、B坐标可得直线OA、OB的解析式,根据互相平行的两条直线斜率相同可知直线OP、AP、BP的斜率,利用待定系数法可求出其解析式,进而联立解析式求出交点坐标即可得答案.【详解】(1)∵点,在反比例函数上,∴,,∴,,∴,,∵点,在一次函数上,∴,,∴,,∴,∴一次函数的解析式为,反比例函数的解析式为.(2)如图,设一次函数与y轴交于点,过点、分别向轴作垂线,垂足为点、,∵当时,,∴点的坐标为,∵,,∴,,∴,即的面积为.(3)∵点A(2,2),B(-1,-4),∴直线OA的解析式为y=x,直线OB的解析式为y=4x,直线AB的解析式为y=2x-2,①如图,当OA//PB,OP//AB时,∴直线OP的解析式为y=2x+b1,设直线PB的解析式为y=x+b1,∵点B(-1,-4)在直线上,∴-4=-1+b1,解得:b1=-3,∴直线PB的解析式为y=x-3,联立直线OP、BP解析式得:,解得:,∴点P坐标为(-3,-6),②如图,当OB//AP,OA//BP时,同①可得BP解析式为y=x-3,设AP的解析式为y=4x+b2,∵点A(2,2)在直线AP上,∴2=2×4+b2,解得:b2=-6,∴直线AP的解析式为y=4x-6,联立PB和AP解析式得:,解得:,∴点P坐标为(1,-2),③如图,当OP//AB,OB//AP时,同①②可得:直线OP的解析式为y=2x,直线AP的解析式为y=4x-6,联立直线OP和AP解析式得:,解得:,∴点P坐标为(3,6),综上所述:存在点P,使以P、A、O、B为顶点的四边形是平行四边形,点的坐标为(-3,-6),(1,-2)(3,6).此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定函数解析式,一次函数与x轴的交点,坐标与图形性质,以及三角形的面积求法,熟练掌握待定系数法是解本题的关键.20、,-8【分析】先移项,将方程化为一般式,然后算判别式的大小可得.【详解】解:将方程化为一般形式为:∴a=3,b=-2,c=1∴根的判别式的值为.本题考查一元二次方程的化简和求解判别式,注意此题的判别式为负数,即表示方程无实数根.21、(1);(2)存在,点.【分析】(1)由题意先求出A、C的坐标,直接利用待定系数法即可求得抛物线的解析式;(2)根据题意转化,BD的长是定值,要使的周长最小则有点、、在同一直线上,据此进行分析求解.【详解】解:(1),点的坐标为.,点的坐标为.把,代入,得,解得.抛物线的解析式为.(2)存在.把代入,解得,,点的坐标为.点的横线坐标为.故点的坐标为.如图,设是抛物线对称轴上的一点,连接、、、,,的周长等于,又的长是定值,点、、在同一直线上时,的周长最小,由、可得直线的解析式为,抛物线的对称轴是,点的坐标为,在抛物线的对称轴上存在点,使得的周长最小.本题考查二次函数图像性质的综合问题,熟练掌握并利用利用待定系数法即可求出二次函数的解析式以及运用数形结合思维分析是解题的关键.22、(1);(2)成立,理由见解析;(3)【分析】(1)如图1,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a进而由三角形的面积公式得出结论;
(2)如图2,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有.DE=BC=a进而由三角形的面积公式得出结论;
(3)如图3,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.【详解】解:(1)如图1,过点D作DE⊥CB交CB的延长线于E,
∴∠BED=∠ACB=90°,
由旋转知,AB=BD,∠ABD=90°,
∴∠ABC+∠DBE=90°,
∵∠A+∠ABC=90°,
∴∠A=∠DBE,
在△ABC和△BDE中,
,
∴△ABC≌△BDE(AAS)
∴BC=DE=a.
∵S△BCD=BC⋅DE=
故答案为(2)(1)中结论仍然成立,理由:如图,过点作边上的高,在中,∵,由旋转可知:,∴,∴,又∵,∴,∴,(3).如图3,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,
∴∠AFB=∠E=90°,BF=BC=a.
∴∠FAB+∠ABF=90°
∵∠ABD=90°,
∴∠ABF+∠DBE=90°,
∴∠FAB=∠EBD
∵线段BD是由线段AB旋转得到的,
∴AB=BD
在△AFB和△BED中,
,
∴△AFB≌△BED(AAS),
∴BF=DE=a.
∵S△BCD=BC⋅DE=⋅a⋅a=.
∴△BCD的面积为.此题是几何变换综合题,主要考查了直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形的面积公式的运用,判断出△ABC≌△BDE是解本题的关键.23、(1)证明见解析;(2)证明见解析;(3)1.【分析】(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解.【详解】(1)如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如图,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)如图:过点C作CF⊥AD于F,∵AD∥BC,∠B=90°,∴∠A=90°,
∵∠A=∠B=90°,FC⊥AD,∴四边形ABCF是矩形,且AB=BC=12,∴四边形ABCF是正方形,∴AF=12,由(2)可得DE=DF+BE,∴DE=4+DF,在△ADE中,AE2+DA2=DE2,∴(12−4)2+(12−DF)2=(4+DF)2,∴DF=6,∴AD=6,∴S四边形ABCD=(AD+BC)×AB=×(6+12)×12=1.本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.24、(1)答案见解析;(2)BD=CE,证明见解析;(3)PB的长是或.【解析】试题分析:(1)根据题意画出图形即可;(2)根据“SAS”证明△ABD≌△ACE,从而可得BD=CE;(3)①根据“SAS”可证△ABD≌△ACE,从而得到∠ABD=∠ACE,再由两角对应相等的两个三角形相似可证△ACD∽△PBE,列比例方程可求出PB的长;②与①类似,先
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030工业软件云化转型痛点与制造业客户付费意愿提升策略研究报告
- 2025-2030工业级无人机在应急救援领域应用拓展与政策支持
- 2025-2030工业物联网协议标准化进程与设备互联互通方案研究
- 屠宰场供应链合作创新创业项目商业计划书
- 智能健康秤与身体成分分析创新创业项目商业计划书
- 智能美发设备创新创业项目商业计划书
- 小麦水饺创新创业项目商业计划书
- 无人机快递服务创新创业项目商业计划书
- 手术室信息化管理系统创新创业项目商业计划书
- 2025安徽淮南市科学技术协会所属淮南市科学技术馆招聘硕士研究生及以上人员1人模拟试卷及答案详解一套
- 医院信息安全保密培训课件
- 物流紧急事件应急预案方案
- 幼儿创意玉米课件
- 2025年智能焊接机器人产业发展蓝皮书-GGII高工咨询
- 冷却塔填料更换施工方案
- 运输公司环保措施方案(3篇)
- 2025安全月八大特殊作业竞赛题库及答案
- 医疗机构基孔肯雅热防控卫生监督检查表
- 刀具更换管理办法
- 快消品包装行业可持续性发展报告2025:包装印刷行业绿色转型
- 痛风性关节炎鉴别
评论
0/150
提交评论