




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届贵州黔西南州望谟三中学数学九年级第一学期期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图所示,在半径为10cm的⊙O中,弦AB=16cm,OC⊥AB于点C,则OC等于()A.3cm B.4cm C.5cm D.6cm2.已知2x=3y(x≠0,y≠0),则下面结论成立的是()A. B. C. D.3.如图,点P在△ABC的边AC上,下列条件中不能判断△ABP∽△ACB的是()A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP•AC D.CB2=CP•CA4.下列手机应用图标中,是中心对称图形的是()A. B. C. D.5.如图,水平地面上有一面积为30cm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面.将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是()A.cm B.cm C.cm D.30cm6.袋子中有4个黑球和3个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机从袋中摸出一个球,摸到白球的概率为()A. B. C. D.7.华为手机锁屏密码是6位数,若密码的前4位数字已经知道,则一次解锁该手机密码的概率是()A. B. C. D.8.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为()A. B. C. D.69.若点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,则当y≥0时,x的取值范围是()A.﹣1<x<3 B.x<﹣1或x>3 C.﹣1≤x≤3 D.x≤﹣1或x≥310.某市从2018年开始大力发展旅游产业.据统计,该市2018年旅游收入约为2亿元.预计2020年旅游收入约达到2.88亿元,设该市旅游收入的年平均增长率为x,下面所列方程正确的是()A.2(1+x)2=2.88 B.2x2=2.88 C.2(1+x%)2=2.88 D.2(1+x)+2(1+x)2=2.8811.某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个根是x=1 D.不存在实数根12.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为A. B. C. D.二、填空题(每题4分,共24分)13.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离出发点的水平距离为__m.14.如图,AB为半圆的直径,点D在半圆弧上,过点D作AB的平行线与过点A半圆的切线交于点C,点E在AB上,若DE垂直平分BC,则=______.15.已知,则=_____________.16.某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为,根据题意列出方程为______________________.17.若函数y=(k-2)是反比例函数,则k=______.18.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.三、解答题(共78分)19.(8分)定义:将函数C1的图象绕点P(m,0)旋转180°,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数。例如:当m=1时,函数y=(x-3)2+1关于点P(1,0)的相关函数为y=-(x+1)2-1.(1)当m=0时,①一次函数y=-x+7关于点P的相关函数为_______;②点A(5,-6)在二次函数y=ax2-2ax+a(a≠0)关于点P的相关函数的图象上,求a的值;(2)函数y=(x-2)2+6关于点P的相关函数是y=-(x-10)2-6,则m=_______(3)当m-1≤x≤m+2时,函数y=x2-6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.20.(8分)如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.(1)求证:△ADE∽△DBE;(2)若DC=7cm,BE=9cm,求DE的长.21.(8分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+ax+a(a≠0)交x轴于点A和点B(点A在点B左边),交y轴于点C,连接AC,tan∠CAO=1.(1)如图1,求抛物线的解析式;(2)如图2,D是第一象限的抛物线上一点,连接DB,将线段DB绕点D顺时针旋转90°,得到线段DE(点B与点E为对应点),点E恰好落在y轴上,求点D的坐标;(1)如图1,在(2)的条件下,过点D作x轴的垂线,垂足为H,点F在第二象限的抛物线上,连接DF交y轴于点G,连接GH,sin∠DGH=,以DF为边作正方形DFMN,P为FM上一点,连接PN,将△MPN沿PN翻折得到△TPN(点M与点T为对应点),连接DT并延长与NP的延长线交于点K,连接FK,若FK=,求cos∠KDN的值.22.(10分)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分别以AB、AC为对称轴翻折变换,D点的对称点为E、F,延长EB、FC相交于G点.(1)求证:四边形AEGF是正方形;(2)求AD的长.23.(10分)从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,∠A=40°,∠B=60°,当∠BCD=40°时,证明:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD是以AC为底边的等腰三角形,求∠ACB的度数.(3)如图2,在△ABC中,AC=2,BC=2,CD是△ABC的完美分割线,△ACD是以CD为底边的等腰三角形,求CD的长.24.(10分)如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE=6,CE=8,AE=1.(1)求AB的长;(2)求平行四边形ABCD的面积;(3)求cos∠AEB.25.(12分)已知二次函数中,函数与自变量的部分对应值如下表:(1)求该二次函数的关系式;(2)若,两点都在该函数的图象上,试比较与的大小.26.如图,已知等边△ABC,AB=1.以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求△FDG的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据垂径定理可知AC的长,再根据勾股定理即可求出OC的长.【详解】解:连接OA,如图:∵AB=16cm,OC⊥AB,∴AC=AB=8cm,在RtOAC中,OC===6(cm),故选:D.本题考查的是垂径定理、勾股定理,熟练掌握垂径定理,构造出直角三角形是解答此题的关键.2、D【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,B.由内项之积等于外项之积,得x:3=y:2,即,故该选项不符合题意,C.由内项之积等于外项之积,得x:y=3:2,即,故该选项不符合题意,D.由内项之积等于外项之积,得2:y=3:x,即,故D符合题意;故选:D.本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.3、D【分析】观察图形可得,与已经有一组角∠重合,根据三角形相似的判定定理,可以再找另一组对应角相等,或者∠的两条边对应成比例.注意答案中的、两项需要按照比例的基本性质转化为比例式再确定.【详解】解:项,∠=∠,可以判定;项,∠=∠,可以判定;项,,,可以判定;项,,,不能判定.本题主要考查了相似三角形的判定定理,结合图形,按照定理找到条件是解答关键.4、B【解析】根据中心对称图形的概念判断即可.【详解】A、不是中心对称图形;B、是中心对称图形;C、不是中心对称图形;D、不是中心对称图形故选:B.本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、A【解析】如下图,在灰色扇形OAB向右无滑动滚动过程中,点O移动的距离等于线段A1B1的长度,而A1B1的长度等于灰色扇形OAB中弧的长度,∵S扇形=,OA=6,∴(cm),即点O移动的距离等于:cm.故选A.点睛:在扇形沿直线无滑动滚动的过程中,由于圆心到圆上各点的距离都等于半径,所以此时圆心作的是平移运动,其平移的距离就等于扇形沿直线滚动的路程.6、A【分析】根据题意,让白球的个数除以球的总数即为摸到白球的概率.【详解】解:根据题意,袋子中有4个黑球和3个白球,∴摸到白球的概率为:;故选:A.本题考查了概率的基本计算,摸到白球的概率是白球数比总的球数.7、C【分析】根据排列组合,求出最后两位数字共存在多少种情况,即可求解一次解锁该手机密码的概率.【详解】根据题意,我们只需解锁后两位密码即可,两位数字的排列有种可能∴一次解锁该手机密码的概率是故答案为:C.本题考查了排列组合的问题,掌握排列组合的公式是解题的关键.8、A【解析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故选A.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9、C【分析】根据点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,可以求得c的值,从而可以得到该抛物线的解析式,然后令y=0,求得抛物线与x轴的交点,然后根据二次函数的性质即可得到当y≥0时,x的取值范围.【详解】解:∵点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,∴0=﹣3(﹣1﹣1)2+c,得c=12,∴y=﹣3(x﹣1)2+12,当y=0时,﹣3(x﹣1)2+12=0,解得:x1=﹣1,x2=3,又∵-3<0,抛物线开口向下,∴当y≥0时,x的取值范围是﹣1≤x≤3,故选:C.本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.10、A【分析】设该市旅游收入的年平均增长率为x,根据该市2018年旅游收入及2020年旅游预计收入,即可得出关于x的一元二次方程,即可得出结论.【详解】设该市旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88故选A.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.11、A【分析】直接把已知数据代入进而得出c的值,再解方程根据根的判别式分析即可.【详解】∵x=﹣1为方程x2﹣8x﹣c=0的根,1+8﹣c=0,解得c=9,∴原方程为x2-8x+9=0,∵=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A.本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程,根的情况由来判别,当>0时,方程有两个不相等的实数根,当=0时,方程有两个相等的实数根,当<0时,方程没有实数根.12、B【解析】试题解析:在菱形中,,,所以,,在中,,因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.二、填空题(每题4分,共24分)13、.【分析】可利用勾股定理及所给的比值得到所求的线段长.【详解】如图,∵AB=10米,tanA==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4米.故答案为4.本题主要考查了解直角三角形的应用-坡度坡角问题,能从实际问题中整理出直角三角形是解答本题的关键.14、【分析】连接CE,过点B作BH⊥CD交CD的延长线于点H,可证四边形ACHB是矩形,可得AC=BH,AB=CH,由垂直平分线的性质可得BE=CE,CD=BD,可证CE=BE=CD=DB,通过证明Rt△ACE≌Rt△HBD,可得AE=DH,通过证明△ACD∽△DHB,可得AC2=AE•BE,由勾股定理可得BE2﹣AE2=AC2,可得关于BE,AE的方程,即可求解.【详解】解:连接CE,过点B作BH⊥CD交CD的延长线于点H,∵AC是半圆的切线∴AC⊥AB,∵CD∥AB,∴AC⊥CD,且BH⊥CD,AC⊥AB,∴四边形ACHB是矩形,∴AC=BH,AB=CH,∵DE垂直平分BC,∴BE=CE,CD=BD,且DE⊥BC,∴∠BED=∠CED,∵AB∥CD,∴∠BED=∠CDE=∠CED,∴CE=CD,∴CE=BE=CD=DB,∵AC=BH,CE=BD,∴Rt△ACE≌Rt△HBD(HL)∴AE=DH,∵CE2﹣AE2=AC2,∴BE2﹣AE2=AC2,∵AB是直径,∴∠ADB=90°,∴∠ADC+∠BDH=90°,且∠ADC+∠CAD=90°,∴∠CAD=∠BDH,且∠ACD=∠BHD,∴△ACD∽△DHB,∴,∴AC2=AE•BE,∴BE2﹣AE2=AE•BE,∴BE=AE,∴故答案为:.本题考察垂直平分线的性质、矩形的性质和相似三角形,解题关键是连接CE,过点B作BH⊥CD交CD的延长线于点H,证明出四边形ACHB是矩形.15、6【分析】根据等比设k法,设,代入即可求解【详解】∵∴设∴故答案为6本题考查比例的性质,遇到等比引入新的参数是解题的关键。16、【分析】设平均每次降低的百分率为x,根据某种药原来每瓶为40元,经过两次降价,现在每瓶售价25.1元列出方程,解方程即可.【详解】设平均每次降低的百分率为x,根据题意得:40(1﹣x)2=25.1.故答案为:40(1﹣x)2=25.1.本题考查了一元二次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.17、-1【解析】根据反比例函数的定义列出方程,解出k的值即可.【详解】解:若函数y=(k-1)是反比例函数,则解得k=﹣1,故答案为﹣1.18、1.【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r.根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr,解得:r=1.故答案为1.本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.三、解答题(共78分)19、(1)①;②;(2)6;(3)的值为或.【分析】(1)①由相关函数的定义,将旋转变换可得相关函数为;②先求出二次函数的相关函数,然后求出相关函数,再把点A代入,即可得到答案;(2)两函数顶点关于点P中心对称,可用中点坐标公式获得点P坐标,从而获得m的值;(3)先确定相关函数,然后根据m的取值范围,对m进行分类讨论,以对称轴在给定区间的左侧,中部,右侧,三种情况分类讨论,获得对应的m的值.【详解】解:(1)①根据相关函数的定义,关于点P(0,0)旋转变换可得相关函数为;故答案为:;②∵,关于点的相关函数为.∵点在二次函数的图象上,.解得:.(2)∵的顶点为(2,6);的顶点坐标为(10,-6);∵两个二次函数的顶点关于点P(m,0)成中心对称,∴故答案为:6;(3)∵,关于点的相关函数为.①当,即时,当时,有最大值为2.(不符合题意,舍去),.②当,即时,当时,有最大值为2..,(都不符合题意,舍去).③当,即,当,有最大值为2..,(不符合题意,舍去).综上,的值为或.本题考查了二次函数的性质问题以及中心对称,以及相关函数的定义,旋转的性质,中心对称图形的性质,(3)是本题的难点,需要分三类进行讨论,研究函数的变化轨迹,是很好的一道压轴问题.20、(1)证明见解析;(2)DE=12cm.【分析】(1)由平行四边形的对角相等,可得,即可求得,又因公共角,从而可证得;(2)根据相似三角形的对应边成比例求解即可.【详解】(1)平行四边形ABCD中,又;(2)平行四边形ABCD中,由题(1)得,即解得:.本题考查了平行四边形的性质、相似三角形的判定定理与性质,熟记各性质与定理是解题关键.21、(1)y=﹣x2+x+1;(2)D的坐标为(1,1);(1)【分析】(1)通过抛物线y=先求出点A的坐标,推出OA的长度,再由tan∠CAO=1求出OC的长度,点C的坐标,代入原解析式即可求出结论;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,证△DZE≌△DWB,得到DZ=DW,由此可知点D的横纵坐标相等,设出点D坐标,代入抛物线解析式即可求出点D坐标;(1)如图1,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,过点F作DC的垂线,交DC的延长线于点U,先求出点G坐标,求出直线DG解析式,再求出点F的坐标,即可求出正方形FMND的边长,再求出其对角线FN的长度,最后证点F,K,M,N,D共圆,推出∠KDN=∠KFN,求出∠KFN的余弦值即可.【详解】解:(1)在抛物线y=中,当y=0时,x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),∴OA=1,∵tan∠CAO=1,∴OC=1OA=1,∴C(0,1),∴a=1,∴a=2,∴抛物线的解析式为:y=﹣x2+x+1;(2)如图2,过点D分别作x轴和y轴的垂线,垂足分别为W和Z,∵∠ZDW=∠EDB=90°,∴∠ZDE=∠WDB,∵∠DZE=∠DWB=90°,DE=DB,∴△DZE≌△DWB(AAS),∴DZ=DW,设点D(k,﹣k2+k+1),∴k=﹣k2+k+1,解得,k1=﹣(舍去),k2=1,∴D的坐标为(1,1);(1)如图1,连接CD,分别过点C,H作F的垂线,垂足分别为Q,I,∵sin∠DGH=∴设HI=4m,HG=5m,则IG=1m,由题意知,四边形OCDH是正方形,∴CD=DH=1,∵∠CDQ+∠IDH=90°,∠IDH+∠DHI=90°,∴∠CDQ=∠DHI,又∵∠CQD=∠DIH=90°,∴△CQD≌△DIH(AAS),设DI=n,则CQ=DI=n,DQ=HI=4m,∴IQ=DQ﹣DI=4m﹣n,∴GQ=GI﹣IQ=1m﹣(4m﹣n)=n﹣m,∵∠GCQ+∠QCD=90°,∠QCD+∠CDQ=90°,∴∠GCQ=∠CDQ,∴△GCQ∽△CDQ,∴∴∴n=2m,∴CQ=DI=2m,∴IQ=2m,∴tan∠CDG=,∵CD=1,∴CG=,∴GO=CO﹣CG=,设直线DG的解析式为y=kx+,将点D(1,1)代入,得,k=,∴yDG=,设点F(t,﹣t2+t+1),则﹣t2+t+1=t+,解得,t1=1(舍去),t2=﹣,∴F(﹣,)过点F作DC的垂线,交DC的延长线于点U,则,∴在Rt△UFD中,DF=,由翻折知,△NPM≌△NPT,∴∠MNP=∠TNP,NM=NT=ND,∠TPN=∠MPN,TP=MP,又∵NS⊥KD,∴∠DNS=∠TNS,DS=TS,∴∠SNK=∠TNP+∠TNS=×90°=45°,∴∠SKN=45°,∵∠TPK=180°﹣∠TPN,∠MPK=180°﹣∠MPN,∴∠TPK=∠MPK,又∵PK=PK,∴△TPK≌△MPK(SAS),∴∠MKP=∠TKP=45°,∴∠DKM=∠MKP+∠TKP=90°,连接FN,DM,交点为R,再连接RK,则RK=RF=RD=RN=RM,则点F,D,N,M,K同在⊙R上,FN为直径,∴∠FKN=90°,∠KDN=∠KFN,∵FN=,∴在Rt△FKN中,∴cos∠KDN=cos∠KFN.考核知识点:二次函数综合题.熟记二次函数基本性质,数形结合分析问题是关键.22、(1)见解析;(2)AD=1;【分析】(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;(2)利用勾股定理,建立关于x的方程模型(x﹣2)2+(x﹣3)2=52,求出AD=x=1.【详解】(1)证明:由翻折的性质可得,△ABD≌△ABE,△ACD≌△ACF,∴∠DAB=∠EAB,∠DAC=∠FAC,∵∠BAC=45°,∴∠EAF=90°,∵AD⊥BC,∴∠E=∠ADB=90°,∠F=∠ADC=90°,∴四边形AEGF为矩形,∵AE=AD,AF=AD,∴AE=AF,∴矩形AEGF是正方形;(2)解:根据对称的性质可得:BE=BD=2,CF=CD=3,设AD=x,则正方形AEGF的边长是x,则BG=EG﹣BE=x﹣2,CG=FG﹣CF=x﹣3,在Rt△BCG中,根据勾股定理可得:(x﹣2)2+(x﹣3)2=52,解得:x=1或x=﹣1(舍去).∴AD=x=1;本题考查了翻折对称的性质,全等三角形和勾股定理,以及正方形的判定,解本题的关键是熟练掌握翻折变换的性质:翻折前后图形的对应边或对应角相等;有四个角是直角的四边形是矩形,有一组邻边相等的矩形是正方形.23、(1)证明见解析;(2)∠ACB=96°;(3)CD的长为-1.【分析】(1)根据三角形内角和定理可求出∠ACB=80°,进而可得∠ACD=40°,即可证明AD=CD,由∠BCD=∠A=40°,∠B为公共角可证明三角形BCD∽△BAC,即可得结论;(2)根据等腰三角形的性质可得∠ACD=∠A=48°,根据相似三角形的性质可得∠BCD=∠A=48°,进而可得∠ACB的度数;(3)由相似三角形的性质可得∠BCD=∠A,由AC=BC=2可得∠A=∠B,即可证明∠BCD=∠B,可得BD=CD,根据相似三角形的性质列方程求出CD的长即可.【详解】(1)∵∠A=40°,∠B=60°,∴∠ACB=180°-40°-60°=80°,∵∠BCD=40°,∴∠ACD=∠ACB-∠BCD=40°,∴∠ACD=∠A,∴AD=CD,即△ACD是等腰三角形,∵∠BCD=∠A=40°,∠B为公共角,∴△BCD∽△BAC,∴CD为△ABC的完美分割线.(2)∵△ACD是以AC为底边的等腰三角形,∴AD=CD,∴∠ACD=∠A=48°,∵CD是△ABC的完美分割线,∴△BCD∽△BAC,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.(3)∵△ACD是以CD为底边的等腰三角形,∴AD=AC=2,∵CD是△ABC的完美分割线,∴△BCD∽△BAC,∴∠BCD=∠A,,∵AC=BC=2,∴∠A=∠B,∴∠BCD=∠B,∴BD=CD,∴,即,解得:CD=-1或CD=--1(舍去),∴CD的长为-1.本题考查相似三角形的判定和性质、等腰三角形的性质等知识,正确理解完美分割线的定义并熟练掌握相似三角形的性质是解题关键.24、(1)1;(2)128;(3).【分析】(1)由平行四边形的性质及角平分线的定义可得出AB=AE,进而再利用题中数据即可求解结论;(2)易证CED为直角三角形,则CE⊥AD,基础CE为平行四边形的高,利用平行四边形的面积公式计算即可;(3)易证∠BCE=90°,求cos∠AEB的值可转化为求cos∠EBC的值,利用勾股定理求出BE的长即可.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,(2)∵四边形ABCD是平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于母亲节的演讲稿(15篇)
- 厂房转让协议书(合集15篇)
- 员工年终工作总结合集15篇
- 2025年东营港经济开发区卫生类事业单位急需紧缺人才引进(11人)考前自测高频考点模拟试题附答案详解
- 2025年厦门市供电服务有限公司招聘12人模拟试卷及一套答案详解
- 2025年内江市市本级部分事业单位公开考核招聘工作人员(第二批)的考前自测高频考点模拟试题及答案详解(网校专用)
- 2025年开封教投教育集团招聘教师116人考前自测高频考点模拟试题及答案详解一套
- 2025年湖南省各市州湘能农电服务有限公司联合招聘780人模拟试卷(含答案详解)
- 国际贸易合同
- 2025年春季漳州能源校园招聘全面启动考前自测高频考点模拟试题及完整答案详解一套
- 2025年安徽萧县县直事业单位招聘115人笔试备考题库附答案详解
- 风险分级管控和隐患排查治理体系培训考试试题(附答案)
- 迷彩施工方案
- 2025大模型背景下高等教育数智化转型研究报告
- 2025汽车驾驶员(技师)考试题及答案
- 2025事业单位联考A类《综合应用能力》模拟试题(含答案)
- 水路危险货物运输员专项考核试卷及答案
- 多传感器融合赋能无人驾驶列车的安全感知-洞察及研究
- 汉字的六种结构方式
- 2026年高考数学一轮复习三维设计创新-微拓展 圆锥曲线中的二级结论
- 口腔补牙课件
评论
0/150
提交评论