




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏教版七年级下册期末数学模拟测试试题(比较难)及解析一、选择题1.下列各式中,计算结果为a6的是()A.a2•a3 B.a3+a3 C.a12÷a2 D.(a2)3答案:D解析:D【分析】分别根据同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则以及幂的乘方运算法则逐一判断即可.【详解】解:A、a2•a3=a5,故本选项不合题意;B、a3+a3=2a3,故本选项不合题意;C、a12÷a2=a10,故本选项不合题意;D、(a2)3=a6,故本选项符合题意;故选:D.【点睛】本题考查了合并同类项,同底数幂的乘除法以及幂的乘方,熟记相关运算法则是解答本题的关键.2.如图,直线,b被直线c所截,下列说法正确的是()A.∠2与∠3是同旁内角 B.∠1与∠4是同位角C.与是同旁内角 D.∠1与∠2是内错角答案:A解析:A【分析】同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.依据同位角、内错角以及同旁内角的特征进行判断即可.【详解】解:A.∠2与∠3是同旁内角,故说法正确,符合题意;B.∠1与∠4不是同位角,是对顶角,故说法错误,不合题意;C.∠2与∠4不是同旁内角,是内错角,故说法错误,不合题意;D.∠1与∠2不是内错角,是同位角,故说法错误,不合题意;故选:A.【点睛】本题主要考查了同位角、内错角以及同旁内角的特征,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.3.若方程组的解满足,则的值为()A. B.﹣1 C. D.1答案:A解析:A【分析】根据等式的性质,可得关于k的方程,根据解方程,可得答案.【详解】,①-②得:可得:,因为,所以,解得:,故选A.【点睛】本题考查了二元一次方程组的解,整体代入的出关于k的方程是解题关键.4.若,则下列式子错误的是()A. B. C. D.答案:B解析:B【分析】根据不等式的性质对各个选项逐一判断,选出错误一项即可.【详解】A、,根据不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,,正确,不符合题意;B、,根据不等式的基本性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,故,错误,符合题意;C、,根据不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,,正确,不符合题意;D、,根据不等式的基本性质:不等式两边乘(或除以)同一个数,不等号的方向不改变,故,正确,不符合题意;故选:B.【点睛】本题考查了不等式的性质,熟记不等式的性质是解决本题的关键,(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.对于任意实数m,n,我们把这两个中较小的数记作min{m,n},如min{1,2}=1.若关于x的不等式min{1-2x,-3}>m无解,则m的取值范围是().A.m≤-3. B.m≤2. C.m≥-3. D.m≥2.答案:C解析:C【分析】根据新定义运算法则分情况讨论1-2x与-3的大小及min{1-2x,-3}的值,通过min{1-2x,-3}>m求解m的范围.【详解】解:令由题意可得:当即时,,当即时,,∵,即无解,∴,故选:C.【点睛】本题考查了新定义下解一元一次不等式,明白新定义的运算法则是解题的关键.6.给出下列4个命题:①对顶角相等;②等角的补角相等;③同旁内角相等,两直线平行;④同位角的平分线平行.其中真命题为()A.①④ B.①② C.①③④ D.①②④答案:B解析:B【分析】根据对顶角,平行线等性质进行分析即可.【详解】解:∵对顶角相等,故①正确;∵等角的补角相等,故②正确;∵同旁内角互补,两直线平行,故③错误.∵同位角的平分线不一定平行,故④错误.∴其中正确的有①②,其中正确的个数是2个.故选B.【点睛】考核知识点:真命题.理解相关定理是关键.7.下面两个多位数1248624…,6248624…,都是按照如下方法得到的:从首位数字开始,将左边数字乘以2,若积为一位数,将其写在右边数位上,若积为两位数,则将其个位数字写在右边数位上.依次再进行如上操作得到第3位数字…后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,按如上操作得到一个多位数,则这个多位数前2020位的所有数字之和是()A.10091 B.10095 C.10099 D.10107答案:B解析:B【分析】根据题意进行计算,找到几个数字一循环,然后乘以循环的次数加上非循环的部分即可得到结果.【详解】解:当第一个数字为3时,这个多位数是362486248…,即从第二位起,每4个数字一循环,(2020﹣1)÷4=504…3,前2020个数字之和为:3+(6+2+4+8)×504+6+2+4=10095.故选:B.【点睛】本题考查循环类数字规律题,根据题意找到循环次数,即可求解;本题易错点为是否能找对几个数字循环,易错数目为505次,由于第一个数字不参与循环即易错点为2020漏减1.8.如图,平分和,若,则()A. B. C. D.答案:B解析:B【分析】AD、CM交于点E,AM、BC交于点F,AD、BC交于点H,根据三角形外角性质可证的外角和的外角是同角,分别可表示为与,根据角平分线性质可得,,将、代入计算即可求出.【详解】解:AD、CM交于点E,AM、BC交于点F,AD、BC交于点H,如图,∵的外角和的外角是同角,∵,,∵平分和,∴,,∴,,∵在中,,在中,∴,;∵,∴,,整理得,,化简得,将,代入,解得,∴.故选:B.【点睛】本题考查了三角形外角性质,角平分线有关的计算,灵活运用三角形外角性质及角平分线性质是解题关键.二、填空题9.计算:______.解析:6x5y3【分析】根据单项式乘单项式的乘法法则(系数、同底数幂分别相乘)解决此题.【详解】解:(2x3y2)•(3x2y)=(2×3)•(x3•x2)•(y2•y)=6x5y3.故答案为:6x5y3.【点睛】本题主要考查单项式乘单项式,熟练掌握单项式乘单项式的乘法法则是解决本题的关键.10.命题“同位角相等”是_______(填“真”或“假”,)命题解析:假【分析】两直线平行,同位角相等,如果没有前提条件,并不能确定同位角相等,由此可作出判断.【详解】解:两直线平行,同位角相等,命题“同位角相等”是假命题,因为没有说明前提条件.故答案为:假.【点睛】本题考查了命题与定理的知识,属于基础题,同学们一定要注意一些定理成立的前提条件.11.一个正多边形的内角和是外角和的2倍,其它的边数为______.解析:6【分析】设这个正多边的每一个外角为x°,则每一个内角为2x°,根据内角和外角互补可得x+2x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.【详解】解:设这个正多边的每一个外角为x°,由题意得:x+2x=180,解得:x=60,360°÷60°=6.故答案为6.【点睛】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.12.已知多项式可分解为两个一次因式的积,则______________.解析:-18【分析】设原式可分解为(x+ky+c)(x+ly+d),
展开后得出x2+(k+l)xy+kly2+(c+d)x+(cl+dk)y+cd,推出cd=-24,c+d=-5,cl+dk=43,k+l=7,a=kl求出即可.【详解】解:∵多项式的第一项是x2,因此原式可分解为:
(x+ky+c)(x+ly+d)∵
(x+ky+c)(x+ly+d)=x2+(k+l)xy+kly2+(c+d)x+(cl+dk)y+cd,∴cd=-24,c+d=-5,∴c=3,d=-8,∵cl+dk=43,∴3l-8k=43,∵k+l=7,∴k=-2,l=9,∴a=kl=-18故答案为-18.【点睛】此题考查因式分解的概念,根据题意得出cd=-24,c+d=-5,cl+dk=43,k+l=7,a=kl是解决问题的关键.13.已知且y﹣x2,则k的取值范围是_____.解析:【分析】将方程组中两个方程相减可得y﹣x=3k﹣1,结合y﹣x<2得出关于k的不等式,解之可得答案.【详解】解:,①﹣②,得:﹣x+y=3k﹣1,即y﹣x=3k﹣1,∵y﹣x<2,∴3k﹣1<2,解得k<1,故答案为:k<1.【点睛】本题考查了一元一次不等式的解法,以及二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.14.某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要________平方米.解析:8【分析】将楼梯的竖向左平移可知其总长为2.6m,故横向的楼梯面积为,将楼梯的横向下平移可知其总长为5.8m,故横向的楼梯面积为,想加可得地毯的总面积.【详解】解:2.6×2+5.8×2=16.8,故答案是16.8【点睛】本题考查了线段的平移,通过平移将线段进行转化是解题的关键.15.已知三角形ABC,且AB=3厘米,BC=2厘米,A、C两点间的距离为x厘米,那么x的取值范围是________.答案:1<x<5【分析】直接根据三角形三边的关系进行求解即可;【详解】根据三角形三边关系可得:AB-BC<AC<AB+BC,∵AB=3,BC=2∴1<x<5,故答案为:1<x<5.【点睛解析:1<x<5【分析】直接根据三角形三边的关系进行求解即可;【详解】根据三角形三边关系可得:AB-BC<AC<AB+BC,∵AB=3,BC=2∴1<x<5,故答案为:1<x<5.【点睛】本题考查了三角形的三边关系,正确理解题意是解题的关键.16.如图,在中,、分别为、的中点,若的面积为,则的面积为________.答案:6【分析】根据中线将三角形面积分为相等的两部分可知:△ACD是△CDE的面积的2倍,△ABC的面积是△ACD的面积的2倍,依此即可求解.【详解】∵D、E分别是BC,AD的中点,∴S△CDE解析:6【分析】根据中线将三角形面积分为相等的两部分可知:△ACD是△CDE的面积的2倍,△ABC的面积是△ACD的面积的2倍,依此即可求解.【详解】∵D、E分别是BC,AD的中点,∴S△CDE=S△ACD,S△ACD=S△ABC,∴S△CDE=S△ABC=×24=6.故答案为:6.【点睛】本题考查了三角形的面积和中线的性质:三角形的中线将三角形分为相等的两部分,知道中线将三角形面积分为相等的两部分是解题的关键.17.计算(1)(2)答案:(1)4;(2)【分析】(1)先计算乘方、负整数指数幂和零指数幂,再计算加法;(2)分别利用平方差公式和完全平方公式计算,再进行整式的加减运算;【详解】解:(1);(2).【解析:(1)4;(2)【分析】(1)先计算乘方、负整数指数幂和零指数幂,再计算加法;(2)分别利用平方差公式和完全平方公式计算,再进行整式的加减运算;【详解】解:(1);(2).【点睛】本题主要考查了负整数指数幂、零指数幂和整式的混合运算,熟练掌握运算法则是解题的关键.18.因式分解:(1)(2)答案:(1);(2)【分析】(1)由平方差公式法因式分解计算即可求得.(2)先提公因式,然后根据完全平方公式法因式分解计算即可求得.【详解】解:(1)原式.(2)原式.【点睛】此题考查了因式解析:(1);(2)【分析】(1)由平方差公式法因式分解计算即可求得.(2)先提公因式,然后根据完全平方公式法因式分解计算即可求得.【详解】解:(1)原式.(2)原式.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.19.解方程组(1)(2)答案:(1);(2).【分析】(1)方程组利用代入消元法求解即可;(2)方程组整理后,方程组利用加减消元法求解即可.【详解】解:(1)将②代入①,得解得:将代入②,得原方程组的解为:;解析:(1);(2).【分析】(1)方程组利用代入消元法求解即可;(2)方程组整理后,方程组利用加减消元法求解即可.【详解】解:(1)将②代入①,得解得:将代入②,得原方程组的解为:;(2)方程组化简为:①+②,得解得:将代入①得,解得:原方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.解方程(或不等式)组:(1)(2)答案:(1);(2)【分析】(1)直接利用加减消元法解二元一次方程组即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1),把①+②×2得:解得,把代入①中解解析:(1);(2)【分析】(1)直接利用加减消元法解二元一次方程组即可;(2)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1),把①+②×2得:解得,把代入①中解得,∴方程组的解为:;(2),解不等式①得:,解不等式②得:,∴不等式组的解集为:.【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.三、解答题21.已知:如图,CD⊥AB,FG⊥AB,垂足分别为D、G,点E在AC上,且∠1=∠2.(1)求证:DEBC;(2)如果∠B=46°,且∠A比∠ACB小10°,求∠DEC的度数.答案:(1)见解析;(2)108°【分析】(1)根据CD⊥AB,FG⊥AB,可判定CD∥FG,利用平行线的性质可知∠2=∠BCD,已知∠1=∠2,等量代换得∠1=∠BCD,故可证平行;(2)根据三角解析:(1)见解析;(2)108°【分析】(1)根据CD⊥AB,FG⊥AB,可判定CD∥FG,利用平行线的性质可知∠2=∠BCD,已知∠1=∠2,等量代换得∠1=∠BCD,故可证平行;(2)根据三角形内角和求出∠ACB=72°,再根据平行线的性质即可求解.【详解】解:(1)证明:∵CD⊥AB,FG⊥AB,∴CD∥FG.∴∠2=∠BCD,又∵∠1=∠2,∴∠1=∠BCD,∴DE∥BC.(2)∵∠B=46°,∠ACB-10°=∠A,∴∠ACB+(∠ACB-10°)+46°=180°,∴∠ACB=72°,由(1)知,DE∥BC,∴∠DEC+∠ACB=180°,∴∠DEC=108°.【点睛】此题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“两直线平行,同旁内角互补”是解题的关键.22.某治污公司决定购买10台污水处理设备.现有甲、乙两种型号的设备可供选择,其中每台的价格与月处理污水量如下表:甲型乙型价格(万元/台)xy处理污水量(吨/月)300260经调查:购买一台甲型设备比购买一台乙型设备多2万元,购买3台甲型设备比购买4台乙型设备少2万元.(1)求x,y的值;(2)如果治污公司购买污水处理设备的资金不超过91万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2750吨,为了节约资金,请为该公司设计一种最省钱的购买方案.答案:(1);(2)该公司有6种购买方案,方案1:购买10台乙型设备;方案2:购买1台甲型设备,9台乙型设备;方案3:购买2台甲型设备,8台乙型设备;方案4:购买3台甲型设备,7台乙型设备;方案5:购买4解析:(1);(2)该公司有6种购买方案,方案1:购买10台乙型设备;方案2:购买1台甲型设备,9台乙型设备;方案3:购买2台甲型设备,8台乙型设备;方案4:购买3台甲型设备,7台乙型设备;方案5:购买4台甲型设备,6台乙型设备;方案6:购买5台甲型设备,5台乙型设备;(3)最省钱的购买方案为:购买4台甲型设备,6台乙型设备.【分析】(1)由一台A型设备的价格是x万元,一台乙型设备的价格是y万元,根据题意得等量关系:购买一台甲型设备-购买一台乙型设备=2万元,购买4台乙型设备-购买3台甲型设备=2万元,根据等量关系,列出方程组,再解即可;(2)设购买甲型设备m台,则购买乙型设备(10-m)台,由题意得不等关系:购买甲型设备的花费+购买乙型设备的花费≤91万元,根据不等关系列出不等式,再解即可;(3)由题意可得:甲型设备处理污水量+乙型设备处理污水量≥2750吨,根据不等关系,列出不等式,再解即可.【详解】(1)依题意,得:,解得:.(2)设该治污公司购进m台甲型设备,则购进(10﹣m)台乙型设备,依题意,得:10m+8(10﹣m)≤91,解得:m≤5.又∵m为非零整数,∴m=0,1,2,3,4,5,∴该公司有6种购买方案,方案1:购买10台乙型设备;方案2:购买1台甲型设备,9台乙型设备;方案3:购买2台甲型设备,8台乙型设备;方案4:购买3台甲型设备,7台乙型设备;方案5:购买4台甲型设备,6台乙型设备;方案6:购买5台甲型设备,5台乙型设备.(3)依题意,得:300m+260(10﹣m)≥2750,解得:m≥3,∴m=4,5.当m=4时,总费用为10×4+8×6=88(万元);当m=5时,总费用为10×5+8×5=90(万元).∵88<90,∴最省钱的购买方案为:购买4台甲型设备,6台乙型设备.【点睛】此题主要考查了二元一次方程组的应用和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程(组)和不等式.23.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用根小木棍摆出了个小正方形,请你用等式表示之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了排,共个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示之间的关系,并写出所有可能的取值.答案:(1);(2)正方形有16个,六边形有12个;(3),,或【解析】【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木解析:(1);(2)正方形有16个,六边形有12个;(3),,或【解析】【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木棍,则摆p个正方形需要4+3(p-1)=3p+1根小木棍,由此求得答案即可;(2)设连续摆放了六边形x个,正方形y个,则连续摆放正方形共用小木棍(3y+1)根,六方形共用小木棍(5x+1)根,由题意列出方程组解决问题即可;(3)由(1)可知每排用的小木棍数比这排小正方形个数的3倍多1根,由此可得s、t间的关系,再根据s、t均为正整数进行讨论即可求得所有可能的取值.【详解】(1)摆1个正方形需要4根小木棍,4=4+3×(1-1),摆2个正方形需要7根小木棍,4=4+3×(2-1),摆3个正方形需要10根小木棍,10=4+3×(3-1),……,摆p个正方形需要m=4+3×(p-1)=3p+1根木棍,故答案为:;(2)设六边形有个,正方形有y个,则,解得,所以正方形有16个,六边形有12个;(3)据题意,,据题意,,且均为整数,因此可能的取值为:,,或.【点睛】本题考查二元一次方程组的实际运用,找出连续摆放正方形共用小木棍的根数,六方形共用小木棍的根数是解决问题的关键.24.在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.①若,,则_____;若,则_____;②试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.答案:(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD的度数即可;已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根据平行线的性质可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的内角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性质可得∠AFD=∠FDM+∠FMD=90°-∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.25.已知E、D分别在的边、上,C为平面内一点,、分别是、的平分线.(1)如图1,若点C在上,且,求证:;(2)如图2,若点C在的内部,且,请猜想、、之间的数量关系,并证明;(3)若点C在的外部,且,请根据图3、图4直接写出结果出、、之间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国画数字化保护-洞察与解读
- 2025年宁波余姚市卫生健康事业单位公开招聘卫生技术人员179人考前自测高频考点模拟试题附答案详解(典型题)
- 2025内蒙古能源集团有限公司法律合规与企业管理部副经理岗位招聘1人考前自测高频考点模拟试题及一套答案详解
- 2025年台州温岭市卫生事业单位公开招聘工作人员48人模拟试卷及答案详解(名校卷)
- 微电机仿生结构创新-洞察与解读
- 多模式交通碳排放核算-洞察与解读
- 2025昆明市盘龙区汇承中学招聘教师(12人)考前自测高频考点模拟试题含答案详解
- 2025福建龙岩农业发展有限公司所属企业招聘1人考前自测高频考点模拟试题及完整答案详解
- 2025北京市怀柔区卫生健康委员会所属事业单位招聘25人考前自测高频考点模拟试题及答案详解一套
- 2025黑龙江鸡西市城子河区招聘民兵军事训练教练员2人模拟试卷及完整答案详解1套
- 儿童入园(所)健康检查表
- (正式版)JBT 14581-2024 阀门用弹簧蓄能密封圈
- (高清版)DZT 0334-2020 石油天然气探明储量报告编写规范
- 幼儿园-消毒工作流程图
- 电缆修理工安全生产责任制
- 拼音拼读音节带声调完全版
- 2024被动式超低能耗(居住)绿色建筑节能设计标准
- 某桥梁箱涵、箱通工程监理细则
- 中铝中州矿业有限公司禹州市方山铝土矿矿山地质环境保护和土地复垦方案
- 【教案】圆锥曲线光学性质的数学原理及应用教学设计人教A版(2019)选择性必修第一册
- 2021年12月12日河北省直机关遴选公务员笔试真题及答案解析
评论
0/150
提交评论