




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省武冈市中考数学题库考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、如图,点A,B的坐标分别为,点C为坐标平面内一点,,点M为线段的中点,连接,则的最大值为()A. B. C. D.2、如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为(
)A. B. C. D.3、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积()A.不变 B.面积扩大为原来的3倍C.面积扩大为原来的9倍 D.面积缩小为原来的4、若点P(2,)与点Q(,)关于原点对称,则m+n的值分别为(
)A. B. C.1 D.55、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为()A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、下列说法中,不正确的是(
)A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心2、下列说法中,不正确的是()A.三点确定一个圆B.三角形有且只有一个外接圆C.圆有且只有一个内接三角形D.相等的圆心角所对的弧相等3、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是(
)A.23 B.32 C. D.4、观察如图推理过程,错误的是(
)A.因为的度数为,所以B.因为,所以C.因为垂直平分,所以D.因为,所以5、已知关于的方程,下列说法不正确的是(
)A.当时,方程无解 B.当时,方程有两个相等的实数根C.当时,方程有两个相等的实数根 D.当时,方程有两个不相等的实数根第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、圆锥形冰淇淋的母线长是12cm,侧面积是60πcm2,则底面圆的半径长等于_____.2、如图,、分别与相切于A、B两点,若,则的度数为________.3、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.4、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.5、将点绕x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.四、简答题(2小题,每小题10分,共计20分)1、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为.求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由.2、计算:(1)(2)五、解答题(4小题,每小题10分,共计40分)1、一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4随机摸取一个小球后,不放回,再随机摸出一个小球,分别求下列事件的概率:(1)两次取出的小球标号和为奇数;(2)两次取出的小球标号和为偶数.2、解下列方程:(1);(2).3、如图,四边形ABCD内接于⊙O,AC是直径,点C是劣弧BD的中点.(1)求证:.(2)若,,求BD.4、如图,ABC是⊙O的内接三角形,,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AD=6,求线段AE的长.-参考答案-一、单选题1、B【解析】【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM=ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM=ON+MN最大,∵,则△ABO为等腰直角三角形,∴AB=,N为AB的中点,∴ON=,又∵M为AC的中点,∴MN为△ABC的中位线,BC=1,则MN=,∴OM=ON+MN=,∴OM的最大值为故答案选:B.【考点】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM=ON+MN最大.2、B【解析】【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=,故选B.【考点】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.3、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.【详解】设原来扇形的半径为r,圆心角为n,∴原来扇形的面积为,∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的,∴变化后的扇形的半径为3r,圆心角为,∴变化后的扇形的面积为,∴扇形的面积不变.故选:A.【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.4、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答.【详解】解:∵P(2,-n)与点Q(-m,-3)关于原点对称,∴2=-(-m),-n=-(-3),∴m=2,n=-3,∴.故选:B.【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.5、B【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.【详解】解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;故取得的小正方体恰有三个面被涂色.的概率为.故选:B.【点睛】此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.二、多选题1、ABC【解析】【分析】根据垂径定理的推论,即如果一条直线满足:①垂直于弦,②平分弦,③过圆心,④平分优弧,⑤平分劣弧中的两个条件,即可推论出其余三个,逐一进行判断即可.【详解】解:A、由于直径也是弦,所以平分一条直径的弦不一定垂直这条直径,选项说法错误,符合题意;B、平分一条弧的直线不一定垂直于这条弧,应该是:过圆心,且平分一条弧的直线垂直于这条弧所对的弦,选项说法错误,符合题意;C、弦的垂线不一定经过这条弦所在的圆心,应该是:弦的垂直平分线必经过这条弦所在的圆心,选项说法错误,符合题意;D、在一个圆内,平分一条弧和它所对弦的直线必经过这个圆的圆心,选项说法正确,不符合题意;故选ABC.【考点】本题考查了垂径定理,解题的关键是掌握垂径定理及其推论.2、ACD【解析】【分析】根据不共线三点确定一个圆即可判断A,B,C选项,根据同圆或等圆中,相等的圆心角所对的弧相等即可判断D选项【详解】不共线三点确定一个圆,故A选项不正确,B选项正确;一个圆上可以找出无数个不共线的三个点,即可构成无数个三角形,这些三角形都是这个圆的内接三角形圆有无数个内接三角形;故C选项不正确;同圆或等圆中,相等的圆心角所对的弧相等,故D选项不正确.故选ACD.【考点】本题考查了圆的内接三角形的定义,不共线三点确定一个圆,同圆或等圆中,相等的圆心角所对的弧相等,理解圆的相关性质是解题的关键.3、AB【解析】【分析】设原来的两位数十位上的数字为,则个位上的数字为,根据所得到的新两位数与原来的两位数的乘积为736,可列出方程求解即可.【详解】解:设原来的两位数十位上的数字为,则个位上的数字为,依题意可得:,解得:,,当时,,符合题意,原来的两位数是23,当时,,符合题意,原来的两位数是32,∴原来的两位数是23或32,故选AB.【考点】本题考查了一元二次方程的应用,解题的关键是能正确用每一数位上的数字表示这个两位数.4、ABC【解析】【分析】A.
根据定理“圆心角的度数等于它所对的弧的度数。”可得.B.
根据定理“同圆或等圆中,相等的圆心角所对的弧相等。”可得.C.
根据“垂径定理”及弦的定义可得.D.
根据“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中得到的四组量中有一组量相等,则对应的其余各组量也相等。”可得.【详解】由定理“圆心角的度数等于它所对的弧的度数。”A.∵的度数是∴,故选项A错误.B.
由定理“同圆中相等的圆心角所对的弧相等。”,B选项题干中不是同一个圆,故选项B错误.C.
由“垂径定理:垂直于弦(非直径)的直径平分这条弦,并且平分弦所对的两条弧。没有过圆心,不是直径,并且,根据弦的定义,不是圆O的弦,因此无法判断,故选项C错误.D.
∵∴即由定理“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,则对应的其余各组量也相等。”所以,故选项D正确.【考点】本题旨在考查圆,圆心角,所对应的圆弧及弦的相关定义及性质定理,熟练掌握圆的相关定理是解题的关键.5、ABD【解析】【分析】利用k的值,分别代入求出方程的根的情况即可.【详解】关于的方程,A当k=0时,x-1=0,则x=1,故此选项错误,符合题意;B当k=1时,-1=0,x=±1,方程有两个不相等的实数解,故此选项错误,符合题意;C当k=-1时,,则,,此时方程有两个相等的实数根,故此选项正确,不符合题意;D当时,根据A选项,若k=0,此时方程有一个实数根,故此选项错误,符合题意,故选:ABD.【考点】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键.三、填空题1、5cm.【解析】【分析】设圆锥的底面圆的半径长为rcm,根据圆锥的侧面积公式计算即可.【详解】解:设圆锥的底面圆的半径长为rcm.则×2π•r×12=60π,解得:r=5(cm),故答案为5cm.【考点】圆锥的侧面积公式是本题的考点,牢记其公式是解题的关键.2、【分析】根据已知条件可得出,,再利用圆周角定理得出即可.【详解】解:、分别与相切于、两点,,,,,.故答案为:.【点睛】本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.3、【分析】绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是故答案为:【点睛】本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.4、65【分析】连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.【详解】解:如图所示:连接OA,OC,OB,∵PA、PB、DE与圆相切于点A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案为:65.【点睛】题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.5、或【分析】设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.【详解】设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,如图所示:∵,∴,,∵点A绕点G顺时针旋转90°后得到点,∴,,∴,∵轴,轴,∴,∴,∴,在与中,,∴,∴,,∴,∴,在中,由勾股定理得:,解得:或,∴或.故答案为:,.【点睛】本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.四、简答题1、;有最大值;存在满足条件的点,其坐标为或【解析】【分析】可设抛物线解析式为顶点式,由点坐标可求得抛物线的解析式,则可求得点坐标,利用待定系数法可求得直线解析式;设出点坐标,从而可表示出的长度,利用二次函数的性质可求得其最大值;过作轴,交于点,过和于,可设出点坐标,表示出的长度,由条件可证得为等腰直角三角形,则可得到关于点坐标的方程,可求得点坐标.【详解】解:抛物线的顶点的坐标为,可设抛物线解析式为,点在该抛物线的图象上,,解得,抛物线解析式为,即,点在轴上,令可得,点坐标为,可设直线解析式为,把点坐标代入可得,解得,直线解析式为;设点横坐标为,则,,,当时,有最大值;如图,过作轴交于点,交轴于点,作于,设,则,,是等腰直角三角形,,,当中边上的高为时,即,,,当时,,方程无实数根,当时,解得或,或,综上可知存在满足条件的点,其坐标为或.【考点】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在中主要是待定系数法的考查,注意抛物线顶点式的应用,在中用点坐标表示出的长是解题的关键,在中构造等腰直角三角形求得的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.2、(1);(2)2.【解析】【分析】(1)先去绝对值,零指数幂,负指数幂,二次根式化简,再合并同类项即可;(2)先计算负指数幂,代入特殊角三角函数值,二次根式化简,再计算乘法,合并同类项即可.【详解】解:(1),=,=;(2)=,=,=2.【考点】本题考查特殊角三角函数值,二次根式,负指数幂,零指数幂,绝对值的混合运算,掌握运算法则是解题关键.五、解答题1、(1);(2).【分析】(1)列出表格展示所有可能的结果,根据表格即可知共有12种可能的情况,再找到两次取出的小球标号和为奇数的情况数,利用概率公式,即可求解;(2)找出两次取出的小球标号和为偶数的情况数,再利用概率公式,即可求解.(1)解:根据题意列出表格,如下表:根据表格可知:共有12种可能的情况,其中两次取出的小球标号和为奇数的情况有8种,故两次取出的小球标号和为奇数的概率为;(2)根据表格可知:两次取出的小球标号和为偶数的情况有4种.故两次取出的小球标号和为偶数的概率为.123411+2=3,奇数1+3=4,偶数1+4=5,奇数22+1=3,奇数2+3=5,奇数2+4=6,偶数33+1=4,偶数3+2=5,奇数3+4=7,奇数44+1=5,奇数4+2=6,偶数4+3=7,奇数【点睛】2、(1),(2),【解析】【分析】(1)将分解因式得到(x-2)(x-4)=0,得到x-2=0,x-4=0,解得,;(2)将化简得到,分解因式得到(x-3)(x+1)=0,得到x-3=0,x+1=0,求出,.(1),(x-2)(x-4)=0,x-2=0,x-4=0,x=2或x=4,∴,;(2)(2).,(x-3)(x+1)=0,x-3=0,x+1=0,x=3或x=-1,∴,.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安徽芜湖市南陵县消防救援局招聘政府专职消防队员4人模拟试卷及答案详解(考点梳理)
- 2025安徽工程大学高层次人才招聘60人考前自测高频考点模拟试题及答案详解(名校卷)
- 2025广西百色市西林县社会保险事业管理中心招聘编外聘用人员6人考前自测高频考点模拟试题完整参考答案详解
- 2025贵州省凯里学院第十三届贵州人才博览会引才28人模拟试卷完整答案详解
- 2025内蒙古锡林郭勒盟锡林浩特市第二批公益性岗位人员招募136人考前自测高频考点模拟试题及1套参考答案详解
- 2025安徽黄山太平湖漫心府招聘2人笔试题库历年考点版附带答案详解
- 2025南昌市自然资源和规划局高新分局招聘办公室文秘岗1人模拟试卷及答案详解(全优)
- 2025天津领创信息咨询有限公司面向社会公开招聘17人笔试题库历年考点版附带答案详解
- 2025年福建省石狮市部分公办学校招聘编制内教师61人考前自测高频考点模拟试题及一套参考答案详解
- 易制毒安全培训内容课件
- 财务管理分析毕业论文
- BSCI验厂一整套文件(含手册、程序文件及表单汇编)
- 抗肿瘤药物安全防护与管理
- 2025年综合类-油漆工考试-高级油漆工考试历年真题摘选带答案(5卷单选100题合辑)
- 超声科医生进修成果汇报
- 国家能源集团陆上风电项目通 用造价指标(2025年)
- 融媒体中心保密方案
- 输油管线牺牲阳极法阴极保护施工方案
- 篮球教学室内课件
- 2025年四川省高考历史试卷(含答案)
- 2025党考试题及答案
评论
0/150
提交评论