2024江苏省海门市中考数学达标测试必考附答案详解_第1页
2024江苏省海门市中考数学达标测试必考附答案详解_第2页
2024江苏省海门市中考数学达标测试必考附答案详解_第3页
2024江苏省海门市中考数学达标测试必考附答案详解_第4页
2024江苏省海门市中考数学达标测试必考附答案详解_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省海门市中考数学达标测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为(

)A.30° B.90° C.120° D.180°2、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是(

)A. B.C. D.3、下列各式中表示二次函数的是()A.y=x2+ B.y=2﹣x2C.y= D.y=(x﹣1)2﹣x24、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是()A. B. C. D.5、下列方程中,一定是关于x的一元二次方程的是(

)A. B.C. D.二、多选题(5小题,每小题3分,共计15分)1、如图,AB是圆O的直径,点G是圆上任意一点,点C是的中点,,垂足为点E,连接GA,GB,GC,GD,BC,GB与CD交于点F,则下列表述正确的是(

)A. B.C. D.2、下表时二次函数y=ax2+bx+c的x,y的部分对应值:…………则对于该函数的性质的判断中正确的是()A.该二次函数有最大值B.不等式y>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的两个实数根分别位于﹣<x<0和2<x<之间D.当x>0时,函数值y随x的增大而增大3、如图所示,二次函数的图象的一部分,图像与x轴交于点.下列结论中正确的是(

)A.抛物线与x轴的另一个交点坐标是B.C.若抛物线经过点,则关于x的一元二次方程的两根分别为,5D.将抛物线向左平移3个单位,则新抛物线的表达式为4、如图是抛物线的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),点P在抛物线上,且在直线AB上方,则下列结论正确的是(

)A. B.方程有两个相等的实根C. D.点P到直线AB的最大距离5、关于x的一元二次方程(k-1)x2+4x+k-1=0有两个相等的实数根,则k的值为(

)A.1 B.0 C.3 D.-3第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_______(填序号).2、若m,n是关于x的方程x2-3x-3=0的两根,则代数式m2+n2-2mn=_____.3、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角______度.4、在平面直角坐标系中,点关于原点对称的点的坐标是______.5、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为_____.四、简答题(2小题,每小题10分,共计20分)1、如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.

2、在矩形中,于点,点是边上一点.(1)若平分,交于点,PF⊥BD,如图(1),证明四边形是菱形;(2)若,如图(2),求证:.五、解答题(4小题,每小题10分,共计40分)1、顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.2、如图,已知AB是的直径,点D为弦BC中点,过点C作切线,交OD延长线于点E,连结BE,OC.(1)求证:.(2)求证:BE是的切线.3、为了引导青少年学党史,某中学举行了“献礼建党百年”党史知识竞赛活动,将成绩划分为四个等级:A(优秀)、B(优良)、C(合格)、D(不合格).小李随机调查了部分同学的竞赛成绩,绘制成了如下统计图(部分信息未给出):(1)小李共抽取了名学生的成绩进行统计分析,扇形统计图中“优秀”等级对应的扇形圆心角度数为,请补全条形统计图;(2)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数;(3)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率.4、已知m是方程的一个根,试求的值.-参考答案-一、单选题1、C【解析】【分析】根据图形的对称性,用360°除以3计算即可得解.【详解】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C.【考点】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.2、B【解析】【分析】由题意可知,每个同学需赠送出(x-1)件标本,x名同学需赠送出x(x-1)件标本,即可列出方程.【详解】解:由题意可得,x(x-1)=182,故选B.【考点】本题主要考查了一元二次方程的应用,审清题意、确定等量关系是解答本题的关键.3、B【解析】【分析】利用二次函数的定义逐项判断即可.【详解】解:A、y=x2+,含有分式,不是二次函数,故此选项错误;B、y=2﹣x2,是二次函数,故此选项正确;C、y=,含有分式,不是二次函数,故此选项错误;D、y=(x﹣1)2﹣x2=﹣2x+1,是一次函数,故此选项错误.故选:B.【考点】本题考查了二次函数的概念,属于应知应会题型,熟知二次函数的定义是解题关键.4、D【分析】先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可.【详解】解:列树状图如下所示:由树状图可知一共有8种等可能性的结果数,其中小张从不同的出入口进出的结果数有6种,∴P小张从不同的出入口进出的结果数,故选D.【点睛】本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率.5、B【解析】【分析】根据一元二次方程的概念(只含一个未知数,并且含有未知数的项的次数最高为2次的整式方程是一元二次方程)逐一进行判断即可得.【详解】解:A、,当时,不是一元二次方程,故不符合题意;B、,是一元二次方程,符合题意;C、,不是整式方程,故不符合题意;D、,整理得:,不是一元二次方程,故不符合题意;故选:B.【考点】本题考查了一元二次方程的定义,熟练掌握其定义是解题的关键.二、多选题1、ACD【解析】【分析】根据垂径定理和圆周角定理可以判断A,根据圆周角定理可以判断B,根据圆周角定理、垂径定理以及等角对等边,即可判断C,根据圆周角定理、垂径定理以及平行线的判定,即可判断D.【详解】解:∵AB是圆O的直径,,∴,∴,故A正确;∵AB是圆O的直径,,∴,∵,即,也没有其他条件可以证得和的另外一组内角对应相等,∴不能证得,故B不正确;∵点C是的中点,∴,∴,∵AB是圆O的直径,,∴,∴,∴,∴,故C正确;∵点C是的中点,∴,∵AB是圆O的直径,,∴,∴,∴,∴,故D正确.故选ACD.【考点】本题主要考查了垂径定理、圆周角定理、等腰三角形的判定以及平行线的判定.2、BC【解析】【分析】由图表可得二次函数y=ax2+bx+c的对称轴为直线x=1,a>0,即可判断A,D不正确,由图表可直接判断B,C正确.【详解】解:∵当x=0时,y=-1;当x=2时,y=-1;当x=,y=;当x=,y=;∴二次函数y=ax2+bx+c的对称轴为直线x=1,x>1时,y随x的增大而增大,x<1时,y随x的增大而减小.∴a>0即二次函数有最小值则A,D错误由图表可得:不等式y>-1的解集是x<0或x>2;由图表可得:方程ax2+bx+c=0的两个实数根分别位于-<x<0和2<x<之间;所以选项B,C正确,故选:BC.【考点】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值,理解图表中信息是本题的关键.3、ABD【解析】【分析】结合图象,根据二次函数的性质进行判断即可求解【详解】∵抛物线开口向下,∴a<0,将(-1,0)代入抛物线方程,可得:4a+k=0,∵4a+k=0,∴k=-4a,∴k+a=-3a,∵a<0,∴k+a=-3a>0,即B选项正确;将k=-4a代入抛物线方程,可得:抛物线方程为:,当y=0时,方程的根为-1和3,∴抛物线与x轴的另一个交点为(3,0),即A项正确;将点(-3,m)代入到抛物线方程,可得m=12a,∵结合k=-4a,∴方程,化简为:,∵a<0,∴,即,显然方程无实数解,故C项说法错误;向左平移3个单位,依据左加右减原则,可得新抛物线为:,即D说法正确,故选:ABD.【考点】本题考查了抛物线的性质与图象的知识,解答本题时需注重运用数形结合的思想.4、BCD【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系、坐标系内直线的平移、利用配方法求二次三项式的最值即可一一判断.【详解】解:由图象可知,,则,故A选项错误;由图象可知,直线与抛物线只有一个交点,则方程有两个相等的实根,故B选项正确;当时,抛物线由最大值,则,即,故C选项正确;设直线AB的表达式为,且A(1,3),B(4,0)在直线上,则,解得,,即,由抛物线的对称轴为得,则,即,又A(1,3),B(4,0)在抛物线上,则,解得,,将直线向上平移与抛物线有一个交点时至,要求点P到直线AB的最大距离,即点P为直线与抛物线的交点,过点作于,轴,如图所示,由直线AB可得,为等腰直角三角形,又直线由直线平移得到,且轴,,,是等腰直角三角形,由平移的性质可设直线的表达式为,当与抛物线有一个交点时,即,整理得,由于只有一个交点,则,解得,即直线AB向上平移了:,则,则,点P到直线AB的最大距离,故D选项正确,故选BCD.【考点】本题考查了二次函数的图象及性质、方程与二次函数的关系、函数与不等式的关系、平面直角坐标系内直线的平移,解题的关键学会利用函数图象解决问题,灵活运用相关知识解决问题,本题难点在于要求抛物线上的点到直线的最大距离即求直线平移至与抛物线有一个交点时交点到直线的距离.5、C【解析】【分析】由方程有两个相等的实数根,根据根的判别式可得到关于k的方程,则可求得k的值.【详解】解:∵关于x的一元二次方程(k﹣1)x2+4x+k﹣1=0有两个相等的实数根,∴Δ=0,即42﹣4(k﹣1)2=0,且k﹣1≠0,解得k=3或k=-1.故选C.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.三、填空题1、①②④【解析】【分析】由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断①;由抛物线的对称轴为直线x=1,即可判断②;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断④,由抛物线开口向下,得到a<0,再由当x=-1时,,即可判断③.【详解】解:∵二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),∴c=3,故①正确;∵抛物线的对称轴为直线x=1,∴,即,故②正确;∵抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,∴抛物线与x轴的另一个交点在2到3之间,故④正确;∵抛物线开口向下,∴a<0,∵当x=-1时,,∴即,故③错误,故答案为:①②④.【考点】本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质.2、21【解析】【分析】先根据根与系数的关系得到m+n=3,mn=﹣3,再根据完全平方公式变形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整体代入的方法计算.【详解】解:∵m,n是关于x的方程x2-3x-3=0的两根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案为:21.【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.3、60【分析】根据弧长公式求解即可.【详解】解:,解得,,故答案为:60.【点睛】本题考查了弧长公式,灵活应用弧长公式是解题的关键.4、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.5、【分析】利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案.【详解】解:由旋转得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴阴影部分的面积==,故答案为:..【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.四、简答题1、(1)=;(2)证明见解析.【解析】【分析】(1)根据正方形的性质和相似三角形的判定定理,得△CEF∽△ADF,可得=,进而即可得到结论;(2)由AD∥CB,点E是BC的中点,得△EFC∽△DFA.CF:AF=EC:AD,由FG//AB,得CG:BG=CF:AF,进而即可得到结论.【详解】(1)∵,∴=.∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△CEF∽△ADF,∴=,∴==,∴==;(2)∵AD∥CB,点E是BC的中点,∴△EFC∽△DFA.∴CF:AF=EC:AD=1:2,∵FG⊥BC,∴FG//AB,∴CG:BG=CF:AF=1:2,∴CG=BG.【考点】本题主要考查正方形的性质,相似三角形的判定和性质定理以及平行线分线段成比例定理,掌握相似三角形的对应边成比例,是解题的关键.2、(1)见解析;(2)见解析【解析】【分析】(1)想办法证明AG=PF,AG∥PF,推出四边形AGFP是平行四边形,再证明PA=PF即可解决问题.(2)证明△AEP∽△DEC,可得,由此即可解决问题.【详解】解:(1)∵平分,,,∴,,又∵在中,,在中,∴,又∵,∴,∴,∴,∵,,∴AG∥PF,∴四边形是平行四边形,∴四边形AGFP是菱形;(2)∵,,∴,,∴,又∵,,∴,∴,∴,∴,又∵,∴.【考点】本题主要考查了角平分线的性质,菱形的判定,相似三角形的性质与判定,矩形的性质,解题的关键在于能够熟练掌握相关知识进行求解.五、解答题1、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【详解】(1)将点E代入直线解析式中,0=﹣×4+m,解得m=3,∴解析式为y=﹣x+3,∴C(0,3),∵B(3,0),则有,解得,∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线BD的解析式为y=kx+b,代入点B、D,,解得,∴直线BD的解析式为y=﹣2x+6,则点M的坐标为(x,﹣2x+6),∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,∴当x=时,S有最大值,最大值为.(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HG∥y轴,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,当t2﹣t=t时,解得t1=0(舍),t2=4,此时点P(4,0).当t2﹣t=﹣t时,解得t1=0(舍),t2=,此时点P(,0).综上,点P的坐标为(4,0)或(,0).【考点】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.2、(1)见解析(2)见解析【分析】(1)由垂径定理可得OD⊥BC、CD=DB、∠CDE=∠BDE,然后说明Rt△CDE≌Rt△BDE,最后运用全等三角形的性质即可证明;(2)由等腰三角形的性质可得∠ECB=∠EBC、∠OCB=∠OBC,再根据CE是切线得到∠OCE=90°,即∠OCB+∠BCE=90°,进而说明BE⊥AB即可证明.(1)证明:∵点D为弦BC中点∴OD⊥BC,CD=DB∴∠CDE=∠BDE在Rt△CDE和Rt△BDECD=B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论