




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省威远县2026届数学八上期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8 B.9 C. D.102.满足下列条件的,不是直角三角形的是()A. B.C. D.3.已知∠AOB=30°,点P在∠AOB的内部,P1与P关于OA对称,P2与P关于OB对称,则△P1OP2是()A.含30°角的直角三角形 B.顶角是30的等腰三角形C.等边三角形 D.等腰直角三角形4.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB边上,AD=AC,AE⊥CD,垂足为F,与BC交于点E,则BE的长是()
A.1.5 B.2.5 C. D.35.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正确的个数有()个.A.4 B.3 C.2 D.16.如图,是等边三角形,,则的度数为()A.50° B.55° C.60° D.65°7.下列计算正确的是()A.(﹣1)0=1 B.(x+2)2=x2+4 C.(ab3)2=a2b5 D.2a+3b=5ab8.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=40°,则∠CDE的度数为()A.50° B.40° C.60° D.80°9.点向右平移个单位后的坐标为()A. B. C. D.10.小明手中有2根木棒长度分别为和,请你帮他选择第三根木棒,使其能围成一个三角形,则选择的木棒可以是()A. B. C. D.无法确定11.已知一个等腰三角形的两边长a、b满足方程组则此等腰三角形的周长为()A.5 B.4 C.3 D.5或412.如图,在中,已知点D,E,F分别为BC,AD,CE的中点,且,则的面积是()A.3 B.4 C.5 D.6二、填空题(每题4分,共24分)13.计算:=____________.14.如图,中,,,垂足为,,,点从点出发沿线段的方向移动到点停止,连接.若与的面积相等,则线段的长度是______.15.实数,,,,中,其中无理数出现的频数是______________.16.2015年诺贝尔生理学或医学奖得主中国科学家屠呦呦,发现了一种病毒的长度约为0.00000456毫米,则数据0.00000456用科学记数法表示为_________.17.若式子在实数范围内有意义,则的取值范围是__________.18.如图,正方形纸片中,,是的中点,将沿翻折至,延长交于点,则的长等于__________.三、解答题(共78分)19.(8分)计算与化简求值(1)计算:(2)先化简,再求值:,其中x=220.(8分)先化简,再从中选一个合适的数作为的值代入求值.21.(8分)如图所示,△ABD和△BCD都是等边三角形,E、F分别是边AD、CD上的点,且DE=CF,连接BE、EF、FB.求证:(1)△ABE≌△DBF;(2)△BEF是等边三角形.22.(10分)如图,在△BCD中,BC=4,BD=1.(1)求CD的取值范围;(2)若AE∥BD,∠A=11°,∠BDE=121°,求∠C的度数.23.(10分)计算题:(写出解题步骤,直接写答案不得分)(1)-22++|-2|(2)+÷32+(-1)202024.(10分)如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B的度数.25.(12分)(1)在如图所示的平面直角坐标系中表示下面各点:A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);(2)A点到原点的距离是;(3)将点C向x轴的负方向平移6个单位,它与点重合;(4)连接CE,则直线CE与y轴是什么位置关系;(5)点D分别到x、y轴的距离是多少.26.在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明你的结论;(2)连接DE,如图②,求证:BD2+CD2=2AD2(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=,CD=1,则AD的长为▲.(直接写出答案)
参考答案一、选择题(每题4分,共48分)1、C【分析】本题根据所给的条件得知,△ABC是直角三角形,再根据三角形的面积相等即可求出BC边上的高.【详解】∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式可知,S△ABC=ABAC=BCAD,∴AD=.故选C.【点睛】本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD的值.2、D【分析】根据三角形的内角和求得一个角是90°或者根据勾股定理的逆定理进行判定即可.【详解】解:A、原式可化为,由勾股定理的逆定理可得是直角三角形;B、∵,设,,,则有,即,由勾股定理的逆定理可得是直角三角形;C、原式可化为,由可得,则是直角三角形;D、由,可得:,,,不是直角三角形;故选:D.【点睛】本题考查了三角形的内角和、勾股定理的逆定理,解题的关键是找出满足直角三角形的条件:有一个角是90°,两边的平方和等于第三边的平方.3、C【解析】试题分析:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选C.考点:轴对称的性质4、B【分析】连接DE,由勾股定理求出AB=5,由等腰三角形的性质得出CF=DF,由线段垂直平分线的性质得出CE=DE,由SSS证明△ADE≌△ACE,得出∠ADE=∠ACE=∠BDE=90°,设CE=DE=x,则BE=4-x,在Rt△BDE中,由勾股定理得出方程,解方程即可.【详解】解:连接DE,如图所示,
∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,
∴AB==5,
∵AD=AC=3,AF⊥CD,
∴DF=CF,
∴CE=DE,BD=AB-AD=2,
在△ADE和△ACE中,,
∴△ADE≌△ACE(SSS),
∴∠ADE=∠ACE=90°,
∴∠BDE=90°,
设CE=DE=x,则BE=4-x,
在Rt△BDE中,由勾股定理得:DE2+BD2=BE2,
即x2+22=(4-x)2,
解得:x=1.5;
∴CE=1.5;
∴BE=4-1.5=2.5
故选:B.【点睛】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解题的关键.5、B【分析】根据等边三角形的性质可得AB=AC,∠BAE=∠C=60°,利用“边角边”证明△ABE和△CAD全等,然后分析判断各选项即可.【详解】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°−∠BPQ=90°−60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选B.【点睛】此题考查全等三角形的判定与性质,等边三角形的性质,解题关键在于掌握各性质定义.6、A【分析】利用等边三角形三边相等,结合已知BC=BD,易证、都是等腰三角形,利用等边对等角及三角形内角和定理即可求得的度数.【详解】是等边三角形,,又,,,,,故选A.【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键.7、A【分析】根据零指数幂法则、完全平方公式、积的乘方法则以及合并同类项法则逐个判断即可【详解】解:A、(﹣1)0=1,故本选项正确;B、应为(x+2)2=x2+4x+4,故本选项错误;C、应为(ab3)2=a2b6,故本选项错误;D、2a与3b,不是同类项,不能合并,故本选项错误.故选:A.【点睛】本题考查了零指数幂法则、完全平方公式、积的乘方法则以及合并同类项法则,熟练掌握运算法则及乘法公式是解题的关键.8、C【分析】根据等腰三角形的性质推出∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=20°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.【详解】∵AC=CD=BD=BE,∠A=40°,∴∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=40°,∴∠B=20°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣20°)=80°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣40°﹣80°=60°,故选:C.【点睛】此题考查等腰三角形的性质:等边对等角.9、C【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:把点(−1,3)向右平移3个单位后所得的点的坐标为:(−1+3,3),即(2,3),
故选C.【点睛】本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.10、C【分析】据三角形三边关系定理,设第三边长为xcm,则9-4<x<9+4,即5<x<13,由此选择符合条件的线段.【详解】解:设第三边长为xcm,
由三角形三边关系定理可知,9-4<x<9+4,
即,5<x<13,
∴x=6cm符合题意.
故选:C.【点睛】本题考查了三角形三边关系的运用.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.11、A【解析】试题分析:解方程组得:所以,等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为2.所以这个等腰三角形的周长为2.故选A.考点:1.等腰三角形的性质;2.解二元一次方程组.12、B【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.【详解】点F是CE的中点,△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,E是AD的中点,,E是AD的中点,,,且=16=4故选B.【点睛】本题主要考察三角形的面积,解题关键是证明得出.二、填空题(每题4分,共24分)13、【分析】按照分式的乘方运算法则即可得到答案.【详解】解:故答案为:.【点睛】本题考查的是分式的乘方,熟知分式的乘方是关键,结果的符号要注意好.14、2【分析】当△ADE与△CDE的面积相等时,DE∥AC,此时△BDE∽△BCA,利用相似三角形的对应边成比例进行解答即可.【详解】解:如下图示,依题意得,当DE∥AC时,△ADE与△CDE的面积相等,此时△BDE∽△BCA,
所以BE:AB=BD:BC,因为AB=CB,所以BE=BD所以.【点睛】本题考查了相似三角形的判定与性质,平行线间的距离以及三角形的面积.根据题意得到当DE∥AC时,△ADE与△CDE的面积相等是解题的难点.15、【解析】根据题意可知无理数有:和π,因此其出现的频数为2.故答案为2.16、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.00000451用科学记数法表示为4.51×10-1.故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、a>﹣1【分析】根据二次根式和分式有意义的条件可得a+1>0,再解不等式即可.【详解】由题意得:a+1>0,解得:a>﹣1,故答案为:a>﹣1.【点睛】此题主要考查了二次根式和分式有意义,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.18、1【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【详解】如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6-x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6-x)1+9=(x+3)1,解得x=1.则DE=1.故答案为:1.【点睛】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.三、解答题(共78分)19、(1);(2),【分析】(1)先进行积的乘方运算,再进行单项式除以单项式运算即可得到结果;(2)先把除法转化为乘法,进行约分后,再进行同分母的减法运算即可化简,再把x=-1代入化简结果进行计算即可.【详解】解:(1)==;(2)=把x=2代入上式,得,原式.【点睛】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.20、,原式.【分析】根据分式的混合运算法则对原式进行化简,根据分式有意义的条件选择m的值,最后代入求解即可.【详解】解:原式,,,,,由分式有意义的条件知,,0,1,所以m应为,所以当时,原式.【点睛】本题考查分式的化简求解,熟练掌握分式的混合运算法则及分式有意义的条件是解题的关键.21、(1)详见解析;(2)详见解析.【分析】(1)根据等边三角形的性质及SAS推出△ABE≌△DBF即可;(2)根据全等三角形的性质得出BE=BF,∠ABE=∠DBF,求出∠EBF=60°,根据等边三角形的判定推出即可.【详解】证明:(1)∵△ABD和△BCD都是等边三角形,∴∠ABD=∠A=∠BDF=60°,AB=AD=DB=CD,∵DE=CF,∴AE=DF,在△ABE和△DBF中,∴△ABE≌△DBF(SAS);(2)∵△ABE≌△DBF,∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠EBD+∠DBF=∠EBD+∠ABE=∠ABD=60°,∴△BEF是等边三角形.【点睛】本题主要考查全等三角形的判定及性质,等边三角形的判定及性质,掌握全等三角形和等边三角形的判定方法和性质是解题的关键.22、(1)1<DC<9;(2)∠C=70°.【分析】(1)根据三角形三边关系进行求解即可得;(2)根据平行线的性质求得∠AEC的度数,继而根据三角形内角和定理即可求得答案.【详解】(1)在△BCD中,BD-BC<CD<BD+BC,又∵BC=4,BD=1,∴1-4<CD<1+4,即1<DC<9;(2)∵AE∥BD,∠BDE=121°,∴∠AEC=180°-∠BDE=11°,又∵∠A+∠C+∠AEC=180°,∠A=11°,∴∠C=70°.【点睛】本题考查了三角形三边关系,三角形内角和定理,熟练掌握相关知识是解题的关键.23、(1);(2).【分析】(1)分别按照有理数的乘方,算术平方根以及绝对值的化简方法计算,并合并;(2)分别按照求算术平方根,求立方根乘方及有理数的除法等运算即可.【详解】(1)-22++|-2|==;(2)+÷32+(-1)2020=9-3÷9+1=.【点睛】本题考查了实数的混合运算,牢记相关计算法则,并熟练运用,是解题的关键.24、70°【解析】分析:在CH上截取DH=BH,通过作辅助线,得到△ABH≌△ADH,进而得到CD=AD,则可求解∠B的大小.详解:在CH上截取DH=BH,连接AD,如图∵BH=DH,AH⊥BC,∴△ABH≌△ADH,∴AD=AB∵AB+BH=HC,HD+CD=CH∴AD=CD∴∠C=∠DAC,又∵∠C=35°∴∠B=∠ADB=70°.点睛:掌握全等三角形及等腰三角形的性质,能够求解一些简单的角度问题.25、(1)作图见解析;(2)1;(1)D;(4)平行;(5)点D到x轴的距离是5;点D到y轴的距离是1【解析】(1)根据点的坐标直接描点即可;(2)根据A点坐标可得出A点在x轴上,即可得出A点到原点的距离;
(1)根据点的平移的性质得出平移后的位置;
(4)利用图形性质得出直线CE与坐标轴的位置关系;
(5)利用D点的横纵坐标得出点D分别到x、y轴的距离.【详解】解:(1)描点如下:(2)如图所示:A点到原点的距离是1;故答案为:1(1)将点C向x轴的负方向平移6个单位,它与点D重合;故答案为:D(4)如图所示:CE∥y轴;(5)点D分别到x、y轴的距离分别是5和1.26、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Module 6 Unit 1 What do you do on Sundays (教学设计)-外研版(一起)英语二年级上册
- 第二节 南方地区教学设计初中地理粤人版八年级下册-粤人版2012
- (水滴系列)七年级生物下册 3.3.1 物质运输的载体说课稿2 (新版)济南版
- 03 专题五 牛顿第二定律的综合应用 【答案】作业手册
- 口腔内部健康知识培训课件
- 2023八年级物理下册 第十二章 简单机械 第2节 滑轮第1课时 定滑轮和动滑轮说课稿 (新版)新人教版
- 保姆常见知识培训课件
- 保命防范意识知识培训内容课件
- 高级油漆工考试题及答案
- 13.2.3 边角边教学设计 华东师大版数学八年级上册
- (高清版)DB41∕T 742-2012 公路折线配筋先张法预应力混凝土梁设计施工规范
- 国开(四川)2024年秋《地域文化》形考任务1-2答案终结性考核答案
- 放射性皮肤损伤的护理-中华护理学会团体标准
- 高中数学大题各题型答题模板+必背公式
- 2024年秋新人教版七年级上册历史教学课件 第8课 夏商周时期的科技与文化
- 自考08257《舆论学》备考试题库(含答案)
- 高考生物必修2遗传与进化知识点填空(每天打卡)
- 20G520-1-2钢吊车梁(6m-9m)2020年合订本
- 某地区地质灾害-崩塌勘查报告
- 我的家乡德州夏津宣传介绍模板
- 基于人工智能的个性化学习路径设计
评论
0/150
提交评论