




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省潍坊诸城市第七中学2026届数学八年级第一学期期末达标检测模拟试题标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列代数运算正确的是()A. B. C. D.2.点P(-2,3)关于y轴的对称点的坐标是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)3.下列命题的逆命题为假命题的是()A.如果一元二次方程没有实数根,那么.B.线段垂直平分线上任意一点到这条线段两个端点的距离相等.C.如果两个数相等,那么它们的平方相等.D.直角三角形两条直角边的平方和等于斜边的平方.4.如图,在平面直角坐标系中点A、B、C的坐标分别为(0,1),(3,1),(4,3),在下列选项的E点坐标中,不能使△ABE和△ABC全等是()A.(4,﹣1) B.(﹣1,3) C.(﹣1,﹣1) D.(1,3)5.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为()A.2 B.3 C.5 D.76.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.1,1,C.8,12,13 D.、、7.下列运算正确的是()A. B. C. D.8.用直角三角板,作△ABC的高,下列作法正确的是()A. B.C. D.9.计算的结果是()A.a2 B.-a2 C.a4 D.-a410.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40二、填空题(每小题3分,共24分)11.______;_____.12.一次函数y=(2m-6)x+5中,y随x的增大而减小,则m的取值范围是________.13.的立方根为______.14.方程的根是______.15.如图,的内角平分线与的外角平分线相交于点,若,则____.16.如图,将一张长方形纸片分别沿着EP、FP对折,使点A落在点A′,点B落在点B′,若点P,A′,B′在同一直线上,则两条折痕的夹角∠EPF的度数为_____.17.把二次根式化成最简二次根式得到的结果是______.18.一次函数的图象经过点,且与轴、轴分别交于点、,则的面积等于___________.三、解答题(共66分)19.(10分)为响应低碳号召,张老师上班的交通工具由自驾车改为骑自行车,张老师家距学校15千米,因为自驾车的速度是自行车速度的3倍,所以张老师每天比原来早出发小时,才能按原来时间到校,张老师骑自行车每小时走多少千米?20.(6分)先化简代数式,再从中选一个恰当的整数作为的值代入求值.21.(6分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:;B组:;C组:;D组:.请根据上述信息解答下列问题:(1)本次调查数据的中位数落在______组内,众数落在______组内;(2)若A组取,B组取,C组取,D组取,计算这300名学生平均每天在校体育活动的时间;(保留两位小数)(3)若该辖区约有20000名中学生,请你估计其中达到国家体育活动时间的人数.22.(8分)如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.23.(8分)(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).24.(8分)已知:如图,在矩形ABCD中,AB=6,BC=8,E为直线BC上一点.(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;(2)如图2,点E为BC延长长线上一点,若BD=BE,连接DE,M为ED的中点,连接AM,CM,求证:AM⊥CM;(3)如图3,在(2)条件下,P,Q为AD边上的两个动点,且PQ=5,连接PB、MQ、BM,求四边形PBMQ的周长的最小值.25.(10分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件数如下:每人加工零件数540450300240210120人数112632(1)写出这15人该月加工零件的平均数、中位数和众数;(2)生产部负责人要定出合理的每人每月生产定额,你认为应该定为多少件合适?26.(10分)先化简,再求值:,其中.
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:根据同底幂的乘法,幂的乘方和积运算的乘方法则以及完全平方公式逐一计算作出判断:A.,选项错误;B.,选项错误;C.,选项正确;D.,选项错误.故选C.考点:1.同底幂的乘法;2.幂的乘方和积运算的乘方;3.完全平方公式.2、A【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点P(−2,3)关于y轴的对称点的坐标为(2,3).故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】、逆命题为:如果一元一次方程中,那么没有实数根,正确,是真命题;、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,是真命题;、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题.故选:.【点睛】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.4、D【分析】因为△ABE与△ABC有一条公共边AB,故本题应从点E在AB的上边、点E在AB的下边两种情况入手进行讨论,计算即可得出答案.【详解】△ABE与△ABC有一条公共边AB,当点E在AB的下边时,点E有两种情况①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点E在AB的上边时,坐标为(﹣1,3);点E的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).故选:D.【点睛】本题主要考查了全等三角形的判定,熟练掌握相关判定定理是解题关键.5、C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.6、C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A.32+42=52,能构成直角三角形,故不符合题意;B.12+12=()2,能构成直角三角形,故不符合题意;C.82+122≠132,不能构成直角三角形,故符合题意;D.()2+()2=()2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7、A【解析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【详解】解:,A准确;,B错误;,C错误;,D错误;故选:A.【点睛】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.8、D【解析】分析:根据高的定义一一判断即可.详解:三角形的高必须是从三角形的一个顶点向对边或对边的延长线作的垂线段.可以判断A,B,C虽然都是从三角形的一个顶点出发的,但是没有垂直对边或对边的延长线.故选D.点睛:考查高的画法,是易错点,尤其注意钝角三角形高的画法.9、D【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:,故选D.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.10、A【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、3+4>5,能组成三角形;B、2+2<5,不能组成三角形;C、1+2=3,不能组成三角形;D、10+20<40,不能组成三角形.故选:A.【点睛】此题主要考查三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边,任意两边之差小于第三边.二、填空题(每小题3分,共24分)11、52【分析】直接根据乘方与开方是互逆运算即可求解.【详解】解:5;2【点睛】此题主要考查乘方与开方的互逆运算,正确理解乘方与开方的概念是解题关键.12、m<1【解析】解:∵y随x增大而减小,∴k<0,∴2m-6<0,∴m<1.13、【解析】根据立方根的定义求解可得.【详解】解:,的立方根为,故答案为:.【点睛】本题主要考查立方根,解题的关键是掌握立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.14、,【分析】直接开方求解即可.【详解】解:∵∴∴,故答案为:,.【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种方法是解题的关键.15、58【分析】根据角平分线的定义和三角形外角性质然后整理得到∠BAC=2∠P,代入数据进行计算即可得解.【详解】∵BP、CP分别是∠ABC和∠ACD的平分线,
∴∠ACD=2∠PCD,∠ABC=2∠PBC,由三角形的外角性质得,∠ACD=∠BAC+∠ABC,∠PCD=∠P+∠PBC,∴∠BAC+∠ABC=∠ACD=2∠PCD=2(∠P+∠PBC)=2∠P+2∠PBC=2∠P+∠ABC,∴∠BAC=2∠P,∵∠P=29,∴∠BAC=58.故答案为:58.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和,角平分线的定义,熟记性质并准确识图最后求出∠BAC=2∠P是解题的关键.16、90°【分析】根据翻折的性质得到∠APE=∠A'PE,∠BPF=∠B'PF,根据平角的定义得到∠A'PE+∠B'PF=90°,即可求得答案.【详解】解:如图所示:∵∠APE=∠A'PE,∠BPF=∠B'PF,∠APE+∠A'PE+∠BPF+∠B'PF=180°,∴2(∠A'PE+∠B'PF)=180°,∴∠A'PE+∠B'PF=90°,又∴∠EPF=∠A'PE+∠B'PF,∴∠EPF=90°,故答案为:90°.【点睛】此题考查折叠的性质,平角的定义.17、3【分析】根据二次根式的性质进行化简即可.【详解】解:==3.故答案为:3.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.18、【解析】∵一次函数y=−2x+m的图象经过点P(−2,3),∴3=4+m,解得m=−1,∴y=−2x−1,∵当x=0时,y=−1,∴与y轴交点B(0,−1),∵当y=0时,x=−,∴与x轴交点A(−,0),∴△AOB的面积:×1×=.故答案为.点睛:首先根据待定系数法求得一次函数的解析式,然后计算出与x轴交点,与y轴交点的坐标,再利用三角形的面积公式计算出面积即可.三、解答题(共66分)19、张老师骑自行车每小时走15千米【分析】设张老师骑自行车的速度为x千米/小时,则自驾车的速度为3x/小时,根据时间=路程÷速度结合骑自行车比自驾车多用小时,可得到关于x的分式方程,解之经检验后即可得出结论.【详解】设张老师骑自行车的速度为x千米/小时,则自驾车的速度为3x/小时,根据题意得:,解得:,经检验,是所列分式方程的解,且符合题意.答:张老师骑自行车每小时走15千米.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20、,当时,原式【分析】根据分式的运算法则即可化简,再代入使分式有意义的值即可求解.【详解】,当时,原式.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式的运算法则.21、(1)C;C;(2)1.17小时;(3)12000人.【分析】(1)根据中位数和众数的概念,分析可得答案;(2)根据算术平均数的求法计算即可;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【详解】解:(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;根据众数的概念,众数是出现次数最多的,故调查数据的众数落在C组;(2)(小时)(3)达到国家规定体育活动时间的人数约占×100%=60%.所以,达国家规定体育活动时间的人约有20000×60%=12000(人).【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数和众数的概念、求算术平均数、用样本估计总体.22、(1)见解析;(2)6【分析】(1)根据DB⊥BC,CF⊥AE,得出∠D=∠AEC,再结合∠DBC=∠ECA=90°,且BC=CA,证明△DBC≌△ECA,即可得证;
(2)由(1)可得△DBC≌△ECA,可得CE=BD,根据BC=AC=12cmAE是BC的中线,即可得出,即可得出答案.【详解】证明:(1)证明:∵DB⊥BC,CF⊥AE,
∴∠DCB+∠D=∠DCB+∠AEC=90°.
∴∠D=∠AEC.
又∵∠DBC=∠ECA=90°,且BC=CA,
在△DBC和△ECA中,∴△DBC≌△ECA(AAS).
∴AE=CD;
(2)由(1)可得△DBC≌△ECA∴CE=BD,∵BC=AC=12cmAE是BC的中线,∴,∴BD=6cm.【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC≌△ECA解题关键.23、(1)①1°;②1°;(2)∠BFE=α.【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=1°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=1°.故答案为1.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=1°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=1°.故答案为1.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.24、(1)BE=8﹣2;(2)证明见解析;(3)+5+3.【分析】(1)先求出DE=AD=4,最后用勾股定理即可得出结论;(2)先判断出∠BMD=90°,再判断出△ADM≌△BCM得出∠AMD=∠BMC,即可得出结论;(3)由于BM和PQ是定值,只要BP+QM最小,利用对称确定出MG'就是BP+QM的最小值,最后利用勾股定理即可得出结论.【详解】解:(1)如图1中,∵四边形ABCD是矩形,∴∠C=90°,CD=AB=6,AD=BC=8,∴DE=AD=8,在Rt△CDE中,CE=,∴BE=BC﹣CE=8﹣2;(2)如图2,连接BM,∵点M是DE的中点,∴DM=EM,∵BD=BE,∴BM⊥DE,∴∠BMD=90°,∵点M是Rt△CDE的斜边的中点,∴DM=CM,∴∠CDM=∠DCM,∴∠ADM=∠BCM在△ADM和△BCM中,,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,∴∠AMC=∠AMB+∠BMC=∠AMB+∠AMD=∠BMD=90°,∴AM⊥CM;(3)如图3中,过点Q作QG∥BP交BC于G,作点G关于AD的对称点G',连接QG',当点G',Q,M在同一条线上时,QM+BP最小,而PQ和BM是定值,∴此时,四边形PBMQ周长最小,∵QG∥PB,PQ∥BG,∴四边形BPQG是平行四边形,∴QG=BP,BG=PQ=5,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年3月湖北东津国投集团及子公司社会招聘拟聘用人员考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025贵州普定县自然资源局招聘城镇公益性岗位人员考前自测高频考点模拟试题及答案详解(历年真题)
- 2025广东清远市英德市建筑工程检测站有限公司招聘员工1人模拟试卷及一套完整答案详解
- 2025黑龙江黑河市爱辉区花园社区卫生服务中心招聘非事业编制人员7人考前自测高频考点模拟试题及参考答案详解一套
- 2025南平延平太平镇卫生院招聘药房工作人员考前自测高频考点模拟试题及答案详解(新)
- 2025年菏泽市牡丹区公开招聘教师(110人)考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025年烟台市教育局所属事业单位卫生类岗位公开招聘工作人员(2人)模拟试卷有答案详解
- 2025恒丰银行成都分行春季校园招聘考前自测高频考点模拟试题及答案详解(夺冠)
- 2025福建漳州市供电服务有限公司招聘39人模拟试卷及参考答案详解1套
- 美国足球课件
- 2025年党员党的基本理论应知应会知识100题及答案
- 评估“蛇吞象”式海外并购模式的绩效与影响
- 【公开课】+地球的运动-地球的公转+课件-2024-2025学年七年级地理上学期人教版
- 研发人员晋升管理制度
- 国家保密培训课件
- 2025至2030年中国牛油果行业市场发展前景及投资规模预测报告
- 2025至2030中国快递行业发展现状及发展趋势与投资风险分析
- 雪花啤酒终端销售协议书
- 生产风险管理
- 2025年人保车险考试题及答案
- 《茉莉花》音乐课件
评论
0/150
提交评论