2025年七年级数学下册同步讲义:专题8.1-2 二元一次方程组及其解法(教师版)(人教版)_第1页
2025年七年级数学下册同步讲义:专题8.1-2 二元一次方程组及其解法(教师版)(人教版)_第2页
2025年七年级数学下册同步讲义:专题8.1-2 二元一次方程组及其解法(教师版)(人教版)_第3页
2025年七年级数学下册同步讲义:专题8.1-2 二元一次方程组及其解法(教师版)(人教版)_第4页
2025年七年级数学下册同步讲义:专题8.1-2 二元一次方程组及其解法(教师版)(人教版)_第5页
已阅读5页,还剩127页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题8.1-2二元一次方程组及其解法(103题69页)专题8.1-2二元一次方程组及其解法考点3:二元一次方程(组)的解及应用含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。4、二元一次方程组的解5、二元一次方程组的解法考点精讲考点1:二元一次方程得定义【分析】根据只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行求解即可.故答案为:1.方法或规律点拨此题主要考查了一元二次方程的定义,解题的关键是掌握判断一个方程此题主要考查了一元二次方程的定义,解题的关键是掌握判断一个方程是否是一元二次方程应注意抓住5巩固练习1.(2023春·吉林长春·七年级长春市第二实验中学校考阶段练习)下列方程是二元一次方程的是()A.x-y²=1B.2x-y=1【答案】B【分析】根据二元一次方程的定义逐项判断即可.【详解】x-y²=1中未知项有2次方,不是二元一次方程,故A不符合题意;2x-y=1符合二元一次方程的定义,是二元一次方程,故B符合题意;xy-1=0中未知项有2次方,不是二元一次方程,故D不符合题意.【答案】B【分析】根据二元一次方程的定义:两个未知数,含未知数的项的次数为1次的整式方程,即可得出结果.图W表示的数是0,【点睛】本题考查二元一次方程的定义.熟练掌握二元一次方程的定义,是解题的关键.;④x²+y=3;⑤⑥x-y+z=0.【分析】先判断选项中方程是否含有两个未知数并且未知数的次数都是1用排除法求出答案.【详解】解:①xy=1属于二元二次方程,故不符合题意;⑥x-y+z=0属于三元一次方程,故不符合题意.故选B.【点睛】本题主要考查的是二元一次方程的概念,解题过程中需要注意的是熟练掌握二元一次方程的形式和特点:含有2个未知数以及未知数的次数都是1的整式方程.A.2x+3y=5B.xy=1【答案】A【分析】根据二元一次方程的定义,逐项判断即可求解.C、不是二元一次方程,故本选项不符合题意;D、不是二元一次方程,故本选项不符合题意;【点睛】本题主要考查了二元一次方程的定义,熟练掌握含有两个未知数,且未知数的次数为1的整式方程是二元一次方程是解题的关键.A.8x+3y=yB.2xy=3【分析】根据二元一次方程定义:含有两个未知数,未知数最高次数为1的整式方程,逐项判定即可得到【答案】1答案.B、方程2xy=3的最高次数是2,不符合定义,故不符合题意;C、方程2x²-3=9的最高次数是2,不符合定义,故不符合题意;【点睛】本题考查二元一次方程定义,熟记含有两个未知数,未知数最高次数为1的整式方程叫二元一次方程是解决问题的关键.【答案】-2【分析】直接利用二元一次方程的定义进而分析得出答案.【详解】解:根据题意得,k-2≠0且Ik|-1=1,所以k=-2.故答案为:-2.【点睛】此题主要考查了二元一次方程的定义,正确把握定义是解题关键.【答案】3【分析】根据二元一次方程的定义可得m-2=1,2n+1=1,进一步即可求出结果.【详解】解:根据题意,得m-2=1,2n+1=1,解得:m=3,n=0,所以m+2n=3+2×0=3;故答案为:3.【点睛】本题考查了二元一次方程的概念,含有两个未知数,并且未知数的次数都是1的整式方程叫做二元一次方程,熟知二元一次方程的定义是解题的关键.【分析】根据二元一次方程的定义可知:未知数的系数不能等于零,未知数的最高次数为1,然后进行求解【详解】解:根据题意得m=1且m+1≠0,解得m=1.【点睛】本题考查了二元一次方程的定义问题,掌握定义是解题的关键.【答案】-1【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【详解】解:由(n-1)x-2y"-2016=0是关于x,y的二元一次方程,得n=1且n-1≠0;m-2016=1.解得n=-1,m=2017.n"=(-1)²017=-1,故答案为:-1.【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面确定a的取值.解得a=1.【点睛】本题考查了绝对值和二元一次方程的定义考点2:二元一次方程组的判定A.【答案】D【分析】根据二元一次方程组的定义判断即可.【详解】解:因为A选项中含有三个未知数,因此不是二元一次方程组,不符合题意;因为B选项中含有分式,因此不是二元一次方程组,不符合题意;因为C选项中含有二次项,因此不是二元一次方程组,不符合题意;因为D选项中是二元一次方程组,符合题意;故选:D.方法或规律点拨本题考查了二元一次方程组的定义,解题关键是掌握其中的三个条件:①是整式方程,②方程组中一共只含有两个未知数,③含未知数的项的次数是1.巩固练习1.(2023春·重庆沙坪坝·七年级重庆市凤鸣山中学校考阶段练习)下列各方程组中,属于二元一次方程组的A.【答案】C【分析】根据二元一次方程组的定义,对选项一一进行分析,即可得出答案.【详解】解:A、有三个未知数,②不是二元一次方程组,故该选项不合题意;B、最高次数为2,②不是二元一次方程组,故该选项不合题意;C、是二元一次方程组,故该选项符合题意;D、含有分式,图不是二元一次方程组,故该选项不合题意.故选:C【点睛】本题考查了二元一次方程组的定义,有两个未知数,每个含有未知数的项的次数都是1,并且一共有两个一次方程,像这样的方程组叫做二元一次方程组.2.(2022秋·湖南永州·七年级统考期末)在下列方程组中,不是二元一次方程组的是()A.【分析】根据由两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组进行判断即可.【详解】解:A.是二元一次方程组;B.是二元一次方程组;C.是二元一次方程组;D.不是二元一次方程组;【点睛】本题考查了二元一次方程组的定义,熟练掌握二元一次方程组是由两个共含有两个未知数,未知数的次数是1,且都是整式的方程组成是解题的关键.3.(2023春·海南海口·七年级海口市第十四中学校考阶段练习)下列属于二元一次方程组的是()A.【答案】C【分析】根据二元一次方程组的定义,逐项判断即可求解.【详解】解:A、其中一个方程不是整式方程,故不是二元一次方程组,故A不符合题意;B、有三个未知数,故不是二元一次方程组,故B不符合题意;C、是二元一次方程组,故C符合题意;D、是二元二次方程组,故D不符合题意;【点睛】本题主要考查了二元一次方程组的定义,熟练掌握二元一次方程满足的条件:为整式方程;含有2个未知数;最高次项的次数是1;两个二元一次方程组合成二元一次方程组是解题的关键.4.(2023·全国·九年级专题练习)下列方程组中是二元一次方程组的是()A.【答案】C【分析】根据二元一次方程组的定义,逐一判断即可解答.由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.【详解】解:A.原方程组为三元一次方程组,故A不符合题意;B.原方程组为分式方程组,故B不符合题意;C.原方程组为二元一次方程组,故C符合题意;D.原方程组为二元二次方程组,故D不符合题意;故选:C.【点睛】本题考查了二元一次方程组的定义,熟练掌握二元一次方程组的定义是解题的关键.5.(2022秋·湖南怀化·七年级校考阶段练习)下列方程组中,不是二元一次方程组的是()A.【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】解:A.是二元一次方程组,故A正确;B.是三元一次方程组,故B错误;C.是二元一次方程组,故C正确;D.是二元一次方程组,故D正确;【点睛】本题考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.6.(2023·全国·七年级专题练习)下列方程组中,是二元一次方程组的是()A.【分析】由两个方程组成,且含有两个未知数,含未知数的项的最高次数是1,这样的方程组是二元一次方程组,根据定义逐一判断即可.【详解】解:A.含有3个未知数,不是二元一次方程组,故A不符合题意;B.是二元一次方程组,故B符合题意;C.含有未知数的项的最高次数不是1,不是二元一次方程组,故C不符合题意;D.含有未知数的项的最高次数不是1,不是二元一次方程组,故D不符合题意;故选:B.【点睛】本题考查的是二元一次方程组的定义,掌握“根据二元一次方程组的定义识别二元一次方程组”是解本题的关键.7.(2023·全国·七年级专题练习)下列方程组中,二元一次方程组的个数有()【分析】利用二元一次方程组的定义:由两个一次方程组成,并含有两个未知数的方程组叫二元一次方程组可得.【详解】解:①符合二元一次方程组的定义,是二元一次方程组;②方程组含有二次项xy,因此不符合二元一次方程组的定义,不是二元一次方程组;③方程组含有三个未知数,因此不符合二元一次方程组的定义,不是二元一次方程组;④方程组含有,是分式,因此不符合二元一次方程组的定义,不是二元一次方程组;⑤符合二元一次方程组的定义,是二元一次方程组;综上,①⑤是二元一次方程组,共2个,【点睛】本题考查了二元一次方程组的定义,掌握二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.考点3:二元一次方程(组)的解及应用A.-2【答案】B【分析】将方程组的解代入方程组,得到的两个式子相减即可得到最后代数式的结果.∴代数式a-2b的值是2.方法或规律点拨本题考查了已知二元一次方程组的解求参数,将两个式子相减得到所需代数式是解题关键.巩固练习【分析】把x看作已知数求出y,即可确定出非负整数解.【详解】解:∵2x+y=5,【点睛】此题考查了解二元一次方程,解题的关键是将x看作已知数求出y.A.11B.-11【答案】A【分析】将代入原方程,可得出关于m的一元一次方程,解之即可求出m的值.解得:m=11,∴m的值为11.【点睛】本题考查二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.理解二元一次方程解的定义是解题的关键.几()种方法.【分析】用二元一次方程解决问题的关键是找到2个合适的等量关系.由于5元和10元的数量都是未知量,可设出5元和10元的数量.本题中等量关系为:5元的总面值+10元的总面值=50元.【详解】解:设5元的数量为x,10元的数量为y.共有6种换法.【点睛】本题考查了二元一次方程的应用,解题关键是弄清题意,合适的等量关系,列出方程组.本题要找好等量关系,对于两个未知量要找到其取值范围,此外,还应注意两个未知量是整数.【答案】D【分析】把x=4,代入x-2y=m,即可求解.【详解】解:∵x=4,是方程x-2y=m的解,【点睛】本题主要考查了二元一次方程的解,熟练掌握能使方程左右两边同时成立的未知数的值是方程的解是解题的关键.的解为()【答案】B【分析】将各选项代入方程的左边计算,看是否等于5,如果等于5就是方程的解,如果不等于5,就不是方程的解.【详解】解:A.把·代入得:3×1+0=3≠5,即不是二元一次方程3x+y=5的解,故本选项不B.把·代入得:3×2+(-1)=5,即是二元一次方程3x+y=5的解,故本选项符合题意;C.把代入得:3×(-1)+(-2)=-5≠5,即不是二元一次方程3x+y=5的解,故本选项不符D.把·代入得:3×0+(-5)=-5≠5,即不是二元一次方程3x+y=5的解,故本选项不符合题【点睛】本题主要考查了二元一次方程的解,熟练掌握能使方程左右两边同时成立的未知数的值是方程的解是解题的关键.A.2B.-2【分析】将代入二元一次方程y-kx=7,得到关于k的一元一次方程,解方程即可求解.【详解】解:依题意,-1-2k=7解得:k=-4故选:D.【点睛】本题考查了二元一次方程的解的定义,掌握二元一次方程的解的定义是解题的关键.7.(2023秋·四川成都·八年级统考期末)小明求得方程组的解为,由于不小心,滴上了墨水,刚好遮住了两个数●和■,则这两个数分别为()【分析】根据方程解得定义,把y=4代入4x+y=12可求出x的值,进而求出■的值,即可求出答案.【详解】解:将y=4代入方程4x+y=12得:4x+4=12,即两个数为2和-2.【点睛】本题考查了二元一次方程组的解,知道方程组的解即为能使方程组中两方程成立的未知数的值是解题的关键.8.(2023秋·贵州毕节·八年级校联考期末)已知是方程2x-ay=3的一个解,那么a的A.3B.1【答案】B【分析】根据方程的解,将其代入方程即可求解.【详解】解:将代入方程2x-ay=3,【点睛】此题主要考查了二元一次方程的解以及求参数解的问题.【答案】-5【分析】把代入方程x+my=13求出m,即可.【详解】解:把代入方程x+my=13,得:3-2m=13,解得:m=-5;10.(2022秋·辽宁沈阳·八年级统考期末)已知是方程3x-ay=5的一个解,那么a的值是_【答案】2【分析】把代入3x-ay=5,即可求解.【详解】解:把代入3x-ay=5得:解得:a=2.【点睛】本题主要考查了二元一次方程的解,熟练掌握能使方程左右两边同时成立的未知数的值是方程的解是解题的关键.·【分析】根据二元一次方程组的解满足方程组,把二元一次方程组的解代入,可得答案.【详解】解:把代入方程组考点4:二元一次方程组的解法【分析】(1)直接把①式代入②式,求出b的值,再将b的值代入①式,求出a的值即可;(2)用①式加上②式,即可消去b,求出m的值,再将m的值代入①式,求出b的值即可.【详解】(1)解:(2)解:思想.【分析】用代入法解二元一次方程,由于②中y的系数为-1,故对②进行,下列解法中最简便的是()C.由②得x=8-3y代入①B.由①得代入②D.由②得代入①A.2x-1+x=5B.x-1+x=5C.x-1-x=5【详解】①,①,把②代入①,得2x-(1+x)=5,去括号,得2x-1-x=5.【点睛】本题考查了用代入消元法解二元一次方程组和去括号法则,能把二元一次方程组转化成一元一次方程是解题的关键.解二元一次方程组的方法有代入消元法和加减消元法两种.则k,b的值是()A.k=1,b=0B.k=-1,b=2C.k=2,b=-1D.k=-2,b=1程组,解方程组即可得到答案.【详解】解:∵是关于x,y的二元一次方程y=kx+b的解,故选C.【点睛】本题主要考查了解二元一次方程组和二元一次方程的解,熟知二元一次方程的解是使方程左右两边相等的未知数的值是解题的关键.5.(2023春·重庆沙坪坝·七年级重庆市凤鸣山中学校考阶段练习)关于x,y的方程4x-3y=7和2x+3y=-1的解相同,则x+3y的值为()【答案】B【分析】将两个二元一次方程联立成方程组,解这个方程组求得x,y的值,再将x,y的值代入代数式,计算即可得出结论.【详解】解:∵关于x,y的方程4x-3y=7和2x+3y=-1的解相同,∴x+3y的值为-2.故选:B【点睛】本题考查了二元一次方程的解、解二元一次方程组、求代数式的值,根据题意,联立二元一次方程组,并求得x,y的值是解题的关键.6.(湖南省娄底市2021-2022学年七年级下学期期中考试作业(二)数学试题)解下列方程组:【分析】(1)将y=2x-3代入3x+2y=8,然后将x的值代入y=2x-3,可求出y的值,进一步即可确定二元一次方程组的解;(2)由①得4x-3y=0③,根据加减消元法②-③得8y=32,求出y的值,代入③可求出x的值,即可确定二元一次方程组的解.【详解】(1)将y=2x-3代入3x+2y=8,解得x=2,将x=2代入y=2x-3=1,∴方程组的解为由①得4x-3y=0③,解得y=4,将y=4代入③,得4x-12=0,解得x=3,【点睛】本题考查了解二元一次方程组,熟练掌握加减消元和代入消元法是解题的关键.【答案】(1)·【分析】(1)利用代入法解方程组;(2)利用代入法解方程组.【详解】(1)解:把①代入到②中得:5x=15,解得:x=3,把②代入①得:2(1-y)+4y=5,∴原方程组的解为【点睛】此题考查了解二元一次方程组,正确掌握二元一次方程组的解法:代入法和加减法是解题的关键.【分析】(1)用代入法求解即可;(2)用代入法求解即可.【详解】(1)解:把①代入②得:7(y-3)+5y=9,把代入①得:所以原方程组的解是把①代入②得:3x+2(2x-3)=8,解得:x=2,【点睛】本题考查解二元一次方程组,熟练掌握用代入法求解二元一次方程组的关键.【答案】(1)·【分析】(1)利用加减消元法求解即可;(2)利用加减消元法求解即可;(3)利用代入消元法求解即可;(4)方程组整理后,利用加减消元法求解即可.【详解】(1)解:①+②得:3x=9,解得:x=3,代入①中,解得:y=-1,②×2-①得:7y=-7,解得:x=0,由①得:y=2x+4,代入②中,得:4x-5(2x+4)=-23,解得:代入y=2x+4中,解得:y=5,(4)方程组整理得:①+②得:9y=9,解得:x=1,【点睛】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.【分析】(1)利用代入消元法计算即可;(2)利用加减消元法计算即可.【详解】(1)解:把③代入②,可得:3x+2(2x-4)=-1,解得:x=1,把x=1代入③,可得:y=2×1-4=-2,(2)解:把②×3得:3x+9y=42③,由③-①,可得:7y=35,解得:y=5,把y=5代入②,可得:x+3×5=14,【点睛】本题考查了解二元一次方程组,解本题的关键在熟练掌握加减消元法和代入消元法...【答案】(1)·【分析】(1)利用代入消元法解答,即可求解;(2)先整理,然后利用加减消元法解答,即可求解.【详解】(1)解:把①代入②得:3×2y-2y=8,解得y=2,把y=2代入①得:x=4,(2)解:由②得,3x-2y=8③,①+③得,6x=12,把x=2代入①得,6+2y=4,【点睛】本题主要考查了解二元一次方程组,熟练掌握二元一次方程组的解法一代入消元法,加减消元法是解题的关键.【答案】(1)·【分析】(1)把k=1代入方程组,解方程组即可;(2)根据x+y=5,可得y=5-x,代入方程组解关于x、k的方程组即可.【详解】(1)解:当k=1时,可得:(2)解:∵方程组的解满足x+y=5,把y=5-x代入方程组可得:【点睛】本题考查了解二元一次方程组,熟练掌握解二元一次方程组的方法是解题的关键.【答案】(1)·【分析】(1)利用代入消元法求解即可;(2)利用加减消元法求解即可.【详解】(1)解:把①代入②,得3(2y+3)+2y=17,解得:y=1,把y=1代入①,得x=5,(2)方程组整理得:①×2+②,得7x=7,解得:x=1,把x=1代入①,得y=-1,【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键,解二元一次方程组的方法有代入法和加减法.考点5:二元一次方程组的错解问题(1)甲把a错看成了什么?乙把b错看成了什么?【答案】(1)甲把a错看成了1,乙把b错看成了1;【分析】(1)已知甲看错了方程组中的a,得解为,所以把·代入2ax+y=5,得到a=1;乙方程组,求解即可.解得:a=1,∴把代入2x-by=13,得:解得:b=1,∴甲把a错看成了1,乙把b错看成了1(2)由题意得:将代入2x-by=13,得:解得:b=3,解得:a=2,即①×3+②得:14x=28,将x=2代入①得:4×2+y=5,解得:y=-3,方法或规律点拨本题主要考查二元一次方程组的解及二元一次方程组的错解问题,理解方程组的立的未知数的值是解题的关键.巩固练习得x=2,y=1,乙看错②中的b,解得x=3,y=-1,那么a和b的正确值应是()A.a=1.5,b=-7B.a=4,b=2C.a=4,b=4D.a=-7,b=1.5【分析】甲看错了a,则甲的结果满足②,乙看错了b,则乙的结果满足①,由此建立关于a、b的方程求解即可.【详解】解:∵两位同学在解关于x、y的方程组·时甲看错①中的a,解得x=2,y=1,乙看错②中的b,解得x=3,y=-1,∴把x=2,y=1代入②,得6-b=2,解得:b=4,把x=3,y=-1代入①,得3a-3=9,解得:a=4,【点睛】本题主要考查了二元一次方程组的错解问题,正确理解题意是解题的关键.得到方程组的解为乙看错了方程②中的b,得到方程组的解为则a,b的值分别为()A.-2,6B.2,6C.2,-6【答案】A【分析】由于甲看错了方程①中的a,因此把代入方程②中即可求出正确的b的值.由于乙看错了方程②中的b,因此把代入方程①中即可求出正确的a的值.【详解】把代入方程②中得-8+b=-2把代入方程①中得-3a+10=16解得a=-2【点睛】本题主要考查了二元一次方程组错解复原问题,正确理解题意求出a,b的值是解题的关键.ax+by=2可得a-b=2,最后解关于a、b的二元一次方程组即可解答.【详解】解:把代入cx-3y=-2,解得:c=1再把代入ax+by=2可得:a+b=2把代入ax+by=2可得:a-b=2故答案为:2,0,1.【点睛】本题主要考查学生对二元一次方程组的解、解二元一次方程组等知识点,理解二元一次方程组的解是解答本题的关键.4.(2023春·七年级单元测试)甲、为乙看错了方程组中的b,得到的解为则原方程组的解为()【分析】根据方程组的解满足没有看错的二元一次方程,求出a,b,再解二元一次方程组即可.【详解】解:由题意,得:满足x+by=7;满足ax+y=10,∴原方程组为:,解得:故选B.【点睛】本题考查解含参的二元一次方程组.熟练掌握方程组的解满足没有看错的那个二元一次方程,是解题的关键.【分析】根据方程组解的定义,无论c是对是错,甲和乙求出的解均为ax+by=2的解.将分别代入ax+by=2,组成方程组,从而得出a的值.将甲的正确解·代入cx-7y=8,和从而得出c的解得a=4,所以c=-2.故选:A.【点睛】本题需要对二元一次方程组的解和二元一次方程的解的定义有一个深刻的认识,知道不定方程有无数个解.6.(2022秋·安徽滁州·七年级校考阶段练习)甲、乙两人求二元一次方程ax-by=1的整数解,甲正确地求A.A.【答案】C【分析】将方程的解代入对应方程,组成新的方程组解方程即可.【详解】解:由题意可得,故选C.【点睛】本题考查方程的解及解方程组,解题的关键是知道方程的解满足方程,错方程的解代入错方程.【分析】(1)根据题意建立关于k、b的二元一次方程组,解方程组即可得到答案;(2)由(1)得,再根据题意建立方程解方程即可得到答案.①-②得-2k=-1,解得把.代入②得,解得当y=0时,则解得x=-7.【点睛】本题主要考查了解二元一次方程组,解一元一次方程,正确理解题意建立方程和方程组是解题的关键.程组小李解对了,得:小张抄错了m,得:,求原方程组中a的值.【答案】-1【分析】把小李、小张计算结果代入方程ax+by=2,得到关于a与b的方程组,求出方程组的解即可得到①-②得:5b=0,把b=0代入①得:-2a=2,解得:a=-1.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【答案】64【分析】把方程组的两组解分别代入原方程组,把所得到的等式联立组成三元一次方程组,求出a、b、c的数值,问题得以解决.【点睛】此题主要考查二元一次方程组的解的问题,熟练掌握二元一次方程组的解法是解题的关键.10.(2023春·七年级课时练习)在解方(2)甲把a看成数是多少?乙把b看成的数是多少?∴把代入4x-by=-2,得:4×(-3)-b×(-1)=-2,∴把代入ax+5y=15,得:5a+5×4=15,①×2+②,得:2x=28,把x=14代入①,得:-14+5y=15,解得:(2)∵在解方程组时,由于粗心,甲看错了方程组中的a,而得解为解得:解得:【点睛】本题主要考查二元一次方程组的解的概念和解二元一次方程组,掌握解的意义和解二元一次方程组的步骤,是解题的关键.的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a,b的正确【答案】【分析】把代入②中,把代入①中,联立方程求解可得到a,b的值,再代入所求的式子运算即可.【点睛】本题主要考查积的乘方,解二元一次方程组,解答本题的关键是对相应知识的掌握与运用.得到方程组的解为·乙同学由于看错了方程②中【分析】(1)甲同学看错了a,但是所得的方程组的解是满足方程②,乙同学看错了b,但是所得的方程组的解满足①,由此得到关于a,b的方程;(2)根据(1)所求得到原方程组为【详解】(1)解:由题意得(2)解:由(1)得原方程组为用①×2+②得:2x=28,解得x=14,把x=14代入①得:-14+5y=15,解得利用加减消元法求解即可.【答案】(1)-10【分析】(1)根据题意将x=2,代入方程②可得b的值,将x=2,y=-1代入方程①可得a的值,(2)结合(1)将a和b的值代入原方程组,解方程组即可.【详解】(1)解:根据题意可知:将x=2,代入方程②,得将x=2,y=-1代入方程①,得解得a=2,(2)由(1)知方程组为:①×2-②,得10y=1把代入②得,【点睛】本题考查了解二元一次方程组,二元一次方程的解,掌握加减消元法是解题的关键.(1)甲把a看成了什么,乙把b看成了什么?【答案】(1)甲把a看成了5,乙把b看成了6【分析】(1)把代入ax+5y=10得出关于a的一元一次方程,解一元一次方程即可得出甲把a看成了什么,把代入4x-by=-4得出关于b的一元一次方程,解一元一次方程即可得出乙把b看成了什(2)把代入4x-by=-4得出关于b的一元一次方程,解一元一次方程得出b的值,把代入ax+5y=10得出关于a的一元一次方程,解一元一次方程得出a的值,把a,b代入原方程组得出关于x,y的方程组,解方程组即可得出原方程组的正确解.可得:3a+5×(-1)=10,解得:a=5,可得:4×5-4b=-4,解得:b=6,∴甲把a看成了5,乙把b看成了6;(2)解:把代入4x-by=-4,可得:12+b=-4,解得:b=-16,可得:5a+20=10,解得:a=-2,把a=-2,b=-16代入原由②得:2x+8y=-2③,由①+③,可得:13y=8,把代入①,可得:解得:【点睛】本题考查了二元一次方程组的解、解二元一次方程组,理解二元一次方程组的解,掌握解二元一次方程组的方法是解决问题的关键.考点6:二元一次方程组的特殊解法小明同学在学习二元一次方程组时遇到了这样一个问题:解方程组小明发现如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的(2x+3y)看成一个整体,把(2x-3y)看成一个整体,通过换元,可以解决问题.以下是他的解题过程:原方程组化为解得把代入m=2x+3y,n=2x-3y,解得【答案】(1)·求解即可.(2)令p=x+y,q=x-y.仿照原题的解法求解即可.【详解】(1)令m=x+1,n=y-2,所以解得把代入p=x+y,q=x-y.解得方法或规律点拨本题考查了换元法解方程组,熟练掌握换元法解方程组的意义是解题的关键.巩固练习【答案】D【分析】根据二元一次方程组的解的定义即可求解.【详解】解:∵方程组的解是【点睛】本题考查了二元一次方程组的解的定义,理解二元一次方程组的解的定义是解题的关键.【答案】【分析】观察发现和形式完全相同,故整体考虑,可得解方程即可.【详解】解:∵和形式完全相同,【点睛】本题主要考查了整体思想在解二元一次方程组中的应用,善于观察所给两个方程组的特点,整体考虑,是解题的关键.【答案】2【分析】利用整体思想①+②的得出结果,之后等式两边都除以4,即可得出x+y的值.【详解】解:故答案为:2.【点睛】本题主要考查了二元一次方程组的解,掌握用整体思想解决问题是解题的关键.【答案】【分析】仿照已知方程组的解确定出所求方程组的解即可.【详解】解:方程组变形为∵方程组的解为,解得:故答案为:【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.【答案】-5【分析】根据加减消元法求解即可.故答案为:-5.【点睛】本题考查了解二元一次方程,常见的解法有:代入消元法和加减消元法,运用整体思想求解是解题的关键.【答案】【分析】把第二个方程组的两个方程的两边都乘以5,通过换元替代的方法来解决.【详解】解:将方程组的两个方程都乘以5得:故答案为:【点睛】本题是考查了解二元一次方程组,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.【答案】1【分析】方程组两方程相减即可求出所求.【详解】解:②-①得:a-b=1,故答案为:1.【点睛】此题考查了解二元一次方程组,正确计算是解题的关键.8.(2022·浙江·之江中学七年级阶段练习)关于x,y的方__·__【答案】【分析】将已知解代入方程组中可得将两式相加可得a+b的值,将①÷2可得【详解】解:∵关于x,y的方程组·的解为,解得故答案为:【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法是解答本题的关键.则原方程组可化为方程组【答案】【分析】根据题意,整体代入即可得出结果.设x+y=u,x-y=v,则原方程化为:故答案为:【点睛】题目主要考查代入消元法,理解题意是解题关键.的解”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_·【答案】【分析】所求方程组变形后,根据已知方程组的解求出解即可.【详解】解:设m=x-1,n=y-2,∵方程组,的解是的解是·∴【点睛】本题考查了二元一次方程的解,利用了换元的思想,弄清方程组解的意义是解本题的关键.【答案】【点睛】本题考查解二元一次方程组,熟练掌握二元一次方程组的解法,用整体思想解题是关键.解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5...③,把方程①代入③得:2×3+y=5即y=-1,把y=-1代入方程①,得x=4,所以方程组的解为(i)求xy的值;(ii)求出这个方程组的所有整数解.【分析】(1)根据例题的解法代入计算即可;(2)(i)把方程变形后,再把将①代入方程②,即可;(ii)根据x与y是整数且xy=-3计算即可.【详解】(1)将方程②变形:6x+10y+y=35,把方程①代入③得:2×16+y=35,解得y=3,把y=3代入方程①,得将①代入方程②得:72+7xy=51,【点睛】此题主要考查了特殊方程的解法,关键是掌握读懂题目给的材料.小明同学在学习二元一次方程组时遇到了这样一个问题:解方程组·小明发现如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的(2x+3y)看成一个整体,把(2x-3y)看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令m=2x+3y,n=2x-3y.原方程组化为解得把代入m=2x+3y,n=2x-3y,解得∴原方程组的解为请你参考小明同学的做法解方程组:【答案】(1)·【分析】(1)令m=x+1,n=y-2,原方程组变形为,解得,还原方程组得求解即可.(2)令p=x+y,q=x-y.仿照原题的解法求解即可.【详解】(1)令m=x+1,n=y-2,所以(2)令p=x+y,q=x-y.把代入p=x+y,q=x-y.【点睛】本题考查了换元法解方程组,熟练掌握换元法解方程组的意义是解题的关键.考点7:含有字母系数的二元一次方程组论中正确的有几个()①当这个方程组的解x,y的值互为相反数时,a=-2;②当a=1时,方程组的解也是方程x+y=4+2a③无论a取什么实数,x+2y的值始终不变;④若用x表示y,则A.1B.2【分析】把两个方程相加,可以得出x+y=a+2,从而可得a+2=0,即可判断①;当a=1时,原方程组的解满足x+y=3,而方程x+y=4+2a的解满足x+y=6,即可判断②;先解方程组,然后再计算x+2y的值,即可判断③;将方程组中的字母a消去,即可判断④.①+②得:2x+2y=4+2a,当这个方程组的解x、y的值互为相反数时,即x+y=0,故第1个结论正确;而当a=1时,方程x+y=4+2a的解满足x+y=6,故第2个结论不正确;故第3个结论正确;由①得:a=4-x-3y③,把③代入②得:故第4个结论正确;所以,上列结论中正确的有3个.本题考查了解二元一次方程组,二元一次方程组的解,熟练掌握解方程中的整体思想是解题的关键.巩固练习【分析】①+②得2x+2y=2k+2,得出x+y=k+1,结合条件x+y=3,即可求解.①+②得2x+2y=2k+2,解得k=2,故选A.【点睛】本题考查了二元一次方程组的解,加减消元法解二元一次方程组,掌握二元一次方程组的解法是解题的关键.A.-1B.-2C.-3【答案】D【分析】方程组中两方程相加表示出5x-y,代入已知方程求出k的值即可.①+②得:5x-y=2k+11,【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.【分析】把方程①与方程②相加可得x+y=k-1,再整体代入求值即可.由①+②得:5x+5y=5k-5,解得:k=3,故选A.题的关键.A.2020【答案】D【分析】用①+②,得5x+5y=5k-5,等是两边都除以5,得x+y=k-1,再根据x+y=2022,从而计算出k的值.故选:D.【点睛】本题考查了二元一次方程的解、二元一次方程组的解,掌握用加减消元法解二元一次方程组是解题关键.5.(2022·四川省射洪县射洪中学外国语实验学校七年级期中)若关于x,y的方程组的解【答案】C【分析】先根据方程组的解互为相反数,则x+y=0,然后化简原方程组可得,最后代入x+y=0,即可求得m的值.【详解】解:∵方程组的解互为相反数,①+②得:5x+5y=3m+3,解得:m=-1.【点睛】本题主要考查了解二元一次方程组,根据原方程组得出是解题的关键.6.(2022·全国·八年级专题练习)已知关于x,y的方程组,给出下列结论:①不论a取何值,方程组总有一组解;②当a=-2时,x,y的值互为相反数;③x+2y=3;④当3+>=81时,a=2.其中正确的是()【分析】利用加减消元法消去a,得:x+2y=3,故①③正确;当a=-2时,代入方程组计算得:x+y=0,故②正确;解出方程组的解,根据条件得x+y=4,把方程组的解代入得a=2,故④正确.①×3+②得:4x+8y=12,∴不论a取何值,方程组总有一组解,故①③正确;当a=-2时,方程组为:①+②得:2x+2y=0,∴a=2,故④正确;【点睛】本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,②中可以不用求解方程组的解,而是直接求出x+y的值,这样比较简便.③无论a取任何实数,2x+y的值始终不变,以上三种说法中正确的有()个【答案】D【分析】①当a=0时,解得:,代入方程x+2y=-1成立,①符合题意;②当a=1时,推出x²-y²=(x+y)(x-y)=0×8=0,②符合题意;③中,消掉a,得到4x+2y=6,2x+y=3,③符合题意.【详解】解:把a=0代入得:解得:∴①符合题意;把a=1代入∴②符合题意;①×3+②得:4x+2y=6,∴③符合题意.故选:D.【点睛】本题主要考查了二元一次方程组,解决问题的关键是熟练掌握二元一次方程的解的定义,二元一次方程组的解的定义,平方差公式,解二元一次方程组.8.(2022·重庆一中八年级阶段练习)已知关于x、y的二元一次方程组的解满足x-y=10,则a的值为·【答案】11【分析】将x-y=10变形为x=10+y,再将原方程组中的x换掉,得到关于y、a的二元一次方程组,解之即可.【详解】解:∵x-y=10,把x=10+y代入原方程组,得整理,得①×2-②,得解得a=11.故答案为:11.【点睛】此题考查了解二元一次方程组,解题的关键是把原方程组转化为只含未知数y和a的方程组.则满足条件的所有整数a的和为_·【答案】2【分析】先求出方程组的解,由方程组的解为正整数分析得出a值.∵方程组的解为正整数,∴满足条件的所有整数a的和为0+2=2.故答案为:2.【点睛】本题主要考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.10.(2021·四川省南充市高坪中学七年级期中)甲、乙两人同解方程组时,甲看错了方程(1)中【答案】2【分析】把代入(2)得出-12=-b-2,求出b,把代入(1)得出5a+20=1式的值即可.解得:b=10,把代入(1),得5a+20=15,解得:a=-1,=2.【点睛】本题考查了解二元一次方程组,解一元一次方程和求代数式的值等知识点,解题的关键是能得出关于a、b的一元一次方程.【分析】(1)将m当做常数,采用加减消元法即可求解;(2)将(1)中含m的结果代入二元一次方程中,解方程即可求解.将x=2m+3代入到②中,得y=2m-2,有2(2m+3)+(2m-2)=-14,解得m=-3.【点睛】本题考查了解二元一次方程组以及根据求解二元一次方程中参数的值的知识,掌握加减消元法是解答本题的关键.(3)当m每取一个值时,2x-2y+mx=8就对应一个方程,而这些方程有一个公共解,你能求出这个公共解(4)整数m的值为-2或-4或-10或4.【分析】(1)确定出方程的正整数解即可;(2)已知方程与方程组第一个方程联立求出x与y的值,进而求出m的值;(3)方程变形后,确定出公共解即可;(4)根据方程组有整数解,确定出整数m的值即可.【详解】(1)解:方程x+2y=6整理得(2)解:将x+2y=6记作①,x+y=0记作②,将x=-y代入①,得-y+2y=6,解得y=6,(3)解:2x-2y+mx=8变形得:(2+m)x-2y=8,令x=0,得y=-4,(4)解:①+②得,3x+mx=14,此时m=-2,-4,4,-10.综上,整数m的值为-2或-4或-10或4.【点睛】本题考查了二元一次方程组的解,同解方程,二元一次方程,解二元一次方程组,解题的关键是熟练应用加减消元法.已知x,y满足x+2y=5,且,求m的值.甲同学:先解关于x,y的方程组再求m的值.乙同学:先将方程组中的两个方程相加,再求m的值.你最欣赏上面的哪种思路?先根据你所选的思路解答此题,再简要说明你选择这种思路的理由.【分析】分别根据甲、乙、丙三位同学的思路分别进行分析即可.【详解】解:∵方程组含有变量m,根据甲同学的方法,方程组的解含有变量m,∵根据乙同学的方法,由①+②得4x+10y=5m+5,无法根据结果得到m的值,由①得x=5-2y,代入②得10-4y+3y=8,解得y=2,再将y=2代入x=5-2y,得x=1,将·代入2x+7y=5m-3得2+14一、单选题(每题3分)A.xy+x-2=0B.x²-2y=1C.D.x-3y=-1【答案】D【分析】根据二元一次方程的定义判断选择即可.【详解】xy+x-2=0,含未知数的项的次数是2,不是二元一次方程,故A不符合题意;x²-2y=1,含未知数的项的次数是2,不是二元一次方程,故B不符合题意;分母中含有未知数,不是二元一次方程,故C不符合x-3y=-1,符合二元一次方程的定义,故D符合题意.【点睛】本题考查二元一次方程的定义.掌握含有两个未知数,并且含未知数的项的次数是1的整式方程叫做二元一次方程是解题关键.【答案】A【分析】根据二元一次方程组的定义求解即可.【详解】解:A.,此方程符合二元一次方程组的定义,此选项符合题意;B.第2个方程未知数的最高次数是2,此选项不符合题意;D.此方程含有3个未知数,此选项不符合题意;【点睛】本题主要考查二元一次方程组的定义,组成二元一次方程组的两个方程应共含有两个未知数,且含未知数的项最高次数都是一次,方程的两边都是整式,那么这样的方程组叫做二元一次方程组.所得到的方程,正确的是()A.3x-x-5=8B.3x+x-5=8C.3x+x+5=8D.3x-x+5=8【答案】A【分析】把①代入②,即可求解.把①代入②得:3x-x-5=8.是解题的关键.4.(2022·山东滨州·八年级期中)如果是关于x和A.-4B.4【分析】将方程的解代入方程得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论