




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题16压轴题一、选择题1.(2017山东德州第11题)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在边BC上,且BM=b,连AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF。给出以下五种结论:∠MAD=∠AND;CP=;ΔABM≌ΔNGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共线其中正确的个数是()A.2B.3C.4D.5【答案】D③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,∵AB=NG=a,∠B=∠NGF=90°,GF=BM=b,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,∴S四边形AMFN=AM2=a2+b2;故④正确;⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠ABP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选D.考点:正方形、全等、相似、勾股定理2.(2017重庆A卷第12题)若数a使关于x的分式方程的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10B.12C.14D.16【答案】A.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2,∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选A.考点:分式方程的解;解一元一次不等式组;含待定字母的不等式(组);综合题.3.(2017广西贵港第12题)如图,在正方形中,是对角线与的交点,是边上的动点(点不与重合),与交于点,连接.下列五个结论:①;②;③;④;⑤若,则的最小值是,其中正确结论的个数是()A.B.C.D.【答案】D【解析】试题解析:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,此时S△OMN的最小值是1﹣=,故⑤正确;综上所述,正确结论的个数是5个,故选:D.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.4.(2017湖南怀化第10题)如图,,两点在反比例函数的图象上,,两点在反比例函数的图象上,轴于点,轴于点,,,,则的值是()A.6 B.4 C.3 D.2【答案】D【解析】试题解析:连接OA、OC、OD、OB,如图:由反比例函数的性质可知S△AOE=S△BOF=|k1|=k1,S△COE=S△DOF=|k2|=﹣k2,∵S△AOC=S△AOE+S△COE,∴AC•OE=×2OE=OE=(k1﹣k2)…①,∵S△BOD=S△DOF+S△BOF,∴BD•OF=×(EF﹣OE)=×(3﹣OE)=﹣OE=(k1﹣k2)…②,由①②两式解得OE=1,则k1﹣k2=2.故选D.考点:反比例函数图象上点的坐标特征.二、填空题1(2017浙江衢州第15题)如图,在直角坐标系中,⊙A的圆心A的坐标为(-1,0),半径为1,点P为直线上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是__________【答案】.【解析】试题解析:连接AP,PQ,当AP最小时,PQ最小,∴当AP⊥直线y=﹣x+3时,PQ最小,∵A的坐标为(﹣1,0),y=﹣x+3可化为3x+4y﹣12=0,∴AP==3,∴PQ=.考点:1.切线的性质;2.一次函数的性质.2.(2017重庆A卷第18题)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.【答案】【解析】试题解析:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=,Rt△DAF中,DF=,∵DE=EF,DE⊥EF,∴△DEF是等腰直角三角形,∴DE=EF=,∴PD==3,如图2,∵DC∥AB,∴△DGC∽△FGA,∴,∴CG=2AG,DG=2FG,∴FG=,∵AC=,∴CG=,∴EG=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH=,∴EH=EF﹣FH=,∴∠NDE=∠AEF,∴tan∠NDE=tan∠AEF=,∴,∴EN=,∴NH=EH﹣EN=,Rt△GNH中,GN=,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=.考点:1.折叠;2.正方形的性质.3.(2017湖北武汉第15题)如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE的长为.【答案】7.【解析】试题解析:∵AB=AC,
∴可把△AEC绕点A顺时针旋转120°得到△AE′B,如图,
∴BE′=EC=8,AE′=AE,∠E′AB=∠EAC,
∵∠BAC=120°,∠DAE=60°,
∴∠BAD+∠EAC=60°,
∴∠E′AD=∠E′AB+∠BAD=60°,
在△E′AD和△EAD中
∴△E′AD≌△EAD(SAS),
∴E′D=ED,
过E′作EF⊥BD于点F,
∵AB=AC,∠BAC=120°,
∴∠ABC=∠C=∠E′BA=30°,
∴∠E′BF=60°,
∴∠BE′F=30°,
∴BF=BE′=4,E′F=4,
∵BD=5,
∴FD=BD-BF=1,
在Rt△E′FD中,由勾股定理可得E′D=,
∴DE=7.考点:1.含30度角的直角三角形;2.等腰三角形的性质.4.(2017甘肃兰州第20题)如图,在平面直角坐标系中,的顶点,的坐标分别是,,动点在直线上运动,以点为圆心,长为半径的随点运动,当与四边形的边相切时,点的坐标为 .【答案】(0,0)或(,1)或(3﹣,).【解析】试题解析:①当⊙P与BC相切时,∵动点P在直线y=x上,∴P与O重合,此时圆心P到BC的距离为OB,∴P(0,0).②如图1中,当⊙P与OC相切时,则OP=BP,△OPB是等腰三角形,作PE⊥y轴于E,则EB=EO,易知P的纵坐标为1,可得P(,1).③如图2中,当⊙P与OA相切时,则点P到点B的距离与点P到x轴的距离线段,可得,解得x=3+或3﹣,∵x=3+>OA,∴P不会与OA相切,∴x=3+不合题意,∴p(3﹣,).④如图3中,当⊙P与AB相切时,设线段AB与直线OP的交点为G,此时PB=PG,∵OP⊥AB,∴∠BGP=∠PBG=90°不成立,∴此种情形,不存在P.综上所述,满足条件的P的坐标为(0,0)或(,1)或(3﹣,).考点:切线的性质;一次函数图象上点的坐标特征.三、解答题1.(2017浙江衢州第24题)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连结OB,D为OB的中点。点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF。已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒。(1)如图1,当t=3时,求DF的长;(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3)连结AD,当AD将△DEF分成的两部分面积之比为1:2时,求相应t的值。【答案】(1)3;(2)∠DEF的大小不变;理由见解析;;(3)或.【解析】试题分析:(1)当t=3时,点E为AB的中点,由三角形的中位线定理得出DE∥EA,DE=OA=4,再由矩形的性质证出DE⊥AB,得出∠OAB=∠DEA=90°,证出四边形DFAE是矩形,得出DF=AE=3即可;(2)作DM⊥OA于点M,DN⊥AB于N,证明四边形DMAN是矩形,得出∠MDN=90°,DM∥AB,DN∥OA,由平行线得出比例式,,由三角形中位线定理得出DM=AB=3,DN=OA=4,证明ΔDMF∽ΔDNE,得出,再由三角函数的定义即可得解;试题解析:(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴,∵∠EDF=90°,∴tan∠DEF=;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵点G为EF的三等分点,∴G(,),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直线AD的解析式为y=﹣x+6,把G(,)代入得:t=;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵点G为EF的三等分点,∴G(,),代入直线AD的解析式y=﹣x+6得:t=;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.考点:四边形综合题.2.(2017山东德州第23题)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ.过点E作EF∥AB交PQ于F,连接BF,(1)求证:四边形BFEP为菱形;(2)当E在AD边上移动时,折痕的端点P,Q也随着移动.=1\*GB3①当点Q与点C重合时,(如图2),求菱形BFEP的边长;=2\*GB3②如限定P,Q分别在BA,BC上移动,求出点E在边AD上移动的最大距离.【答案】(1)证明见解析;(2)①菱形BFEP的边长为cm.②点E在边AD上移动的最大距离为2cm.【解析】试题分析:(1)利用定理:四条边都相等的四边形是菱形,证明四边形BFEP为菱形;①在直角三角形APE中,根据勾股定理求出EP=②分两种情况讨论:第一:点Q和点C重合;第二:点P和点A重合试题解析:(1)∵折叠纸片使B点落在边AD上的E处,折痕为PQ∴点B与点E关于PQ对称∴PB=PE,BF=EF,∠BPF=∠EPF又∵EF∥AB∴∠BPF=∠EFP∴∠EPF=∠EFP∴EP=EF∴BP=BF=FE=EP∴四边形BFEP为菱形.(2)①如图2∵四边形ABCD是矩形∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°∵点B与点E关于PQ对称∴CE=BC=5cm在RtΔCDE中,DE2=CE2-CD2,即DE2=52-32∴DE=4cm∴AE=AD-DE=5cm-4cm=1cm在RtΔAPE中,AE=1,AP=3-PB=3-PE∴EP2=12+(3-EP)2,解得:EP=cm.∴菱形BFEP的边长为cm.②当点Q与点C重合时,如图2,点E离A点最近,由①知,此时AE=1cm.当点P与点A重合时,如图3.点E离A点最远,此时,四边形ABQE是正方形.AE=AB=3cm∴点E在边AD上移动的最大距离为2cm.考点:折叠问题,矩形的性质,菱形的性质与判定,分类讨论思想3.(2017浙江宁波第25题)如图,抛物线与轴的负半轴交于点,与轴交于点,连结,点在抛物线上,直线与轴交于点.(1)求的值及直线的函数表达式;(2)点在轴正半轴上,点在轴正半轴上,连结与直线交于点,连结并延长交于点,若为的中点.①求证:;②设点的横坐标为,求的长(用含的代数式表示).【答案】(1)c=-3;直线AC的表达式为:y=x+3;(2)①证明见解析;②【解析】试题分析:(1)把点C(6,)代入中可求出c的值;令y=0,可得A点坐标,从而可确定AC的解析式;(2)①分别求出tan∠OAB=tan∠OAD=,得∠OAB=tan∠OAD,再由M就PQ的中点,得OM=MP,所以可证得∠APM=∠AON,即可证明;②过M点作ME⊥x轴,垂足为E,分别用含有m的代数式表示出AE和AM的长,然后利用即可求解.试题分析:(1)把点C(6,)代入解得:c=-3∴当y=0时,解得:x1=-4,x2=3∴A(-4,0)设直线AC的表达式为:y=kx+b(k≠0)把A(-4,0),C(6,)代入得解得:k=,b=3∴直线AC的表达式为:y=x+3(2)①在RtΔAOB中,tan∠OAB=在RtΔAOD中,tan∠OAD=∴∠OAB=∠OAD∵在RtΔPOQ中,M为PQ的中点∴OM=MP∴∠MOP=∠MPO∵∠MPO=∠AON∴∠APM=∠AON∴ΔAPM∽ΔAON②如图,过点M作ME⊥x轴于点E又∵OM=MP∴OE=EP∵点M横坐标为m∴AE=m+4AP=2m+4∵tan∠OAD=∴cos∠EAM=cos∠OAD=∴AM=AE=∵ΔAPM∽ΔAON∴∴AN=考点:二次函数综合题.4.(2017浙江宁波第26题)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形中,,,求与的度数之和;(2)如图2,锐角内接于,若边上存在一点,使得,的平分线交于点,连结并延长交于点,.求证:四边形是半对角四边形;(3)如图3,在(2)的条件下,过点作于点,交于点,当时,求与的面积之比.【答案】(1)120°;(2)证明见解析;(3).【解析】试题分析:(1)在半对角四边形中,,∵∠A+∠B+∠C+∠D=360°∴3∠B+3∠C=360°∴∠B+∠C=120°即∠B与∠C的度数之和为120°(2)在ΔBED和ΔBEO中∴ΔBED≌ΔBEO∴∠BDE=∠BOE又∵∠BCF=∠BOE∴∠BCF=∠BDE如图,连接OC设∠EAF=a,则∠AFE=2∠EAF=2a∴∠EFC=180°-∠AFE=180°-2a∵OA=OC∴∠OAC=∠OCA=a∴∠AOC=180°-∠OAC-∠OCA=180°-2a∴∠ABC=∠AOC=∠EFC∴四边形DBCF是半对角四边形.(3)如图,过点O作OM⊥BC于点M∵四边形DBCF是半对角四边形∴∠ABC+∠ACB=120°∴∠BAC=60°∴∠BOC=2∠BAC=120°∵OB=OC∴∠OBC=∠OCB=30°∴BC=2BM=BO=BD∵DG⊥OB∴∠HGB=∠BAC=60°∵∠DBG=∠CBA∴ΔDBG∽ΔCBA∴∵DH=BG,BG=2HG∴DG=3HG∴∴考点:1.四边形内角和;2.圆周角定理;3.相似三角形的判定与性质.5.(2017重庆A卷第26题)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】(1)y=x+.(2)3,(3)点Q的坐标为(3,),Q′(3,)或(3,2)或(3,﹣).【解析】试题分析:(1)抛物线的解析式可以变天为y=(x+1)(x-3),从而可得到点A和点B的坐标,然后再求得点E的坐标,设直线AE的解析式为y=kx+b,将点A和点E的坐标代入,求得k和b的值,从而得到AE的解析式;(3)由平移后的抛物线经过点D,可得到点F的坐标,利用中点坐标公式可求得点G的坐标,然后分为QG=FG、QG=QF、FQ=FQ三种情况求解即可.试题解析:(1)∵y=x2﹣x﹣,∴y=(x+1)(x﹣3).∴A(﹣1,0),B(3,0).当x=4时,y=.∴E(4,).设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,解得:k=,b=.∴直线AE的解析式为y=x+.(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.∴直线CE的解析式为y=x﹣.过点P作PF∥y轴,交CE与点F.设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.∴△EPC的面积=×(x2+x)×4=﹣x2+x.∴当x=2时,△EPC的面积最大.∴P(2,﹣).如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.∵K是CB的中点,∴k(,﹣).∵点H与点K关于CP对称,∴点H的坐标为(,﹣).∵点G与点K关于CD对称,∴点G(0,0).∴KM+MN+NK=MH+MN+GN.当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.∴GH==3.学*科网∴KM+MN+NK的最小值为3.(3)如图3所示:∵y′经过点D,y′的顶点为点F,∴点F(3,﹣).∵点G为CE的中点,∴G(2,).∴FG=.∴当FG=FQ时,点Q(3,),Q′(3,).当GF=GQ时,点F与点Q″关于y=对称,∴点Q″(3,2).当QG=QF时,设点Q1的坐标为(3,a).由两点间的距离公式可知:a+=,解得:a=﹣.∴点Q1的坐标为(3,﹣).综上所述,点Q的坐标为(3,),Q′(3,)或(3,2)或(3,﹣).考点:二次函数综合题.6.(2017甘肃庆阳第28题)如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(-2,0),点C(8,0),与y轴交于点A.(1)求二次函数y=ax2+bx+4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系.【答案】(1)y=﹣x2+x+4;(2)N(3,0);(3)OM=AC.【解析】试题分析:(1)由B、C的坐标,利用待定系数法可求得抛物线解析式;(2)可设N(n,0),则可用n表示出△ABN的面积,由NM∥AC,可求得,则可用n表示出△AMN的面积,再利用二次函数的性质可求得其面积最大时n的值,即可求得N点的坐标;(3)由N点坐标可求得M点为AB的中点,由直角三角形的性质可得OM=AB,在Rt△AOB和Rt△AOC中,可分别求得AB和AC的长,可求得AB与AC的关系,从而可得到OM和AC的数量关系.试题解析:(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,∴二次函数的表达式为y=﹣x2+x+4;(2)设点N的坐标为(n,0)(﹣2<n<8),则BN=n+2,CN=8﹣n.∵B(﹣2,0),C(8,0),∴BC=10,在y=﹣x2+x+4中,令x=0,可解得y=4,∴点A(0,4),OA=4,∴S△ABN=BN•OA=(n+2)×4=2(n+2),∵MN∥AC,∴∴,∴∵﹣<0,∴当n=3时,即N(3,0)时,△AMN的面积最大;(3)当N(3,0)时,N为BC边中点,∵MN∥AC,∴M为AB边中点,∴OM=AB,∵AB=,AC=,∴AB=AC,∴OM=AC.考点:二次函数综合题.7.(2017广西贵港第25题)如图,抛物线与轴交于两点,与轴的正半轴交于点,其顶点为.(1)写出两点的坐标(用含的式子表示);(2)设,求的值;(3)当是直角三角形时,求对应抛物线的解析式.【答案】(1)C(0,3a),D(2,﹣a);(2)3;(3)y=x2﹣4x+3或y=x2﹣2x+.试题解析:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD=×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x=,∴E(,0),∴BE=3﹣=∴S△BCD=S△BEC+S△BED=××(3a+a)=3a,∴S△BCD:S△ABD=(3a):a=3,∴k=3;(3)∵B(3,0),C(0,3a),D(2,﹣a),∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,∵∠BCD<∠BCO<90°,∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣(舍去)或a=,此时抛物线解析式为y=x2﹣2x+;综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y=x2﹣2x+.考点:二次函数综合题.8.(2017广西贵港第26题)已知,在中,是边上的一个动点,将沿所在直线折叠,使点落在点处.(1)如图1,若点是中点,连接.①写出的长;②求证:四边形是平行四边形.(2)如图2,若,过点作交的延长线于点,求的长.【答案】(1)①BD=,BP=2.②证明见解析;(2).【解析】试题分析:(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②想办法证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,可得x2=(4﹣x)2+22,推出x=,推出DN=,由△BDN∽△BAM,可得,由此求出AM,由△ADM∽△APE,可得,由此求出AE=,可得EC=AC﹣AE=4﹣=由此即可解决问题.试题解析:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB=,∵AD=CD=2,∴BD=,由翻折可知,BP=BA=2.②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(4﹣x)2+22,∴x=,∵DB=DA,DN⊥AB,∴BN=AN=,在Rt△BDN中,DN=,由△BDN∽△BAM,可得,∴∴AM=2,∴AP=2AM=4,由△ADM∽△APE,可得,∴,∴AE=,∴EC=AC﹣AE=4﹣=,易证四边形PECH是矩形,∴PH=EC=.考点:四边形综合题.9.(2017贵州安顺第26题)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得 ,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.10.(2017湖北武汉第24题)已知点在抛物线上.(1)求抛物线的解析式;(2)如图1,点的坐标为,直线交抛物线于另一点,过点作轴的垂线,垂足为,设抛物线与轴的正半轴交于点,连接,求证;(3)如图2,直线分别交轴,轴于两点,点从点出发,沿射线方向匀速运动,速度为每秒个单位长度,同时点从原点出发,沿轴正方向匀速运动,速度为每秒1个单位长度,点是直线与抛物线的一个交点,当运动到秒时,,直接写出的值.【答案】(1)抛物线的解析式为:y=x2-x;(2)证明见解析;(3);.【解析】试题分析:(1)把A,B两点坐标代入,解方程组求出a,b的值,即可得到二次函数解析式;(2)过点A作AN⊥x轴于点N,则N(-1,0),再求出E点坐标,从而可求tan∠AEN=,再求出直线AF的解析式与抛物线方程联立,求出点G的坐标,则可得到tan∠FHO=,从而得证;(3)进行分类讨论即可得解.试题解析:(1)∵点A(-1,1),B(4,6)在抛物线y=ax2+bx上∴a-b=1,16a+4b=6解得:a=,b=-∴抛物线的解析式为:y=x2-x(2)过点A作AN⊥x轴于点N,则N(-1,0)∴AN=1当y=0时,x2-x=0解得:x=0或1∴E(1,0)∴EN=2∴tan∠AEN=设直线AF的解析式为y=kx+m∵A(-1,1)在直线AF上,∴-k+m=1即:k=m-1∴直线AF的解析式可化为:y=(m-1)x+m与y=x2-x联立,得(m-1)x+m=x2-x∴(x+1)(x-2m)=0∴x=-1或2m∴点G的横坐标为2m∴OH=2m∵OF=m∴tan∠FHO=∴∠AEN=∠FHO∴FH∥AE(3);.考点:二次函数综合题.11.(2017湖南怀化第24题)如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.(1)求抛物线的函数表达式;(2)若点是轴上的一点,且以为顶点的三角形与相似,求点的坐标;(3)如图2,轴玮抛物线相交于点,点是直线下方抛物线上的动点,过点且与轴平行的直线与,分别交于点,,试探究当点运动到何处时,四边形的面积最大,求点的坐标及最大面积;(4)若点为抛物线的顶点,点是该抛物线上的一点,在轴,轴上分别找点,,使四边形的周长最小,求出点,的坐标.【答案】(1)y=x2﹣4x﹣5,(2)D的坐标为(0,1)或(0,);(3)当t=时,四边形CHEF的面积最大为.(4)P(,0),Q(0,﹣).【解析】试题分析:(1)根据待定系数法直接抛物线解析式;(2)分两种情况,利用相似三角形的比例式即可求出点D的坐标;(3)先求出直线BC的解析式,进而求出四边形CHEF的面积的函数关系式,即可求出最大值;(4)利用对称性找出点P,Q的位置,进而求出P,Q的坐标.试题解析:(1)∵点A(﹣1,0),B(5,0)在抛物线y=ax2+bx﹣5上,∴,∴,∴抛物线的表达式为y=x2﹣4x﹣5,(2)如图1,令x=0,则y=﹣5,∴C(0,﹣5),∴OC=OB,∴∠OBC=∠OCB=45°,∴AB=6,BC=5,要使以B,C,D为顶点的三角形与△ABC相似,则有或,①当时,CD=AB=6,∴D(0,1),②当时,∴,∴CD=,∴D(0,),即:D的坐标为(0,1)或(0,);(3)设H(t,t2﹣4t﹣5),∵CE∥x轴,∴点E的纵坐标为﹣5,∵E在抛物线上,∴x2﹣4x﹣5=﹣5,∴x=0(舍)或x=4,∴E(4,﹣5),∴CE=4,∵B(5,0),C(0,﹣5),∴直线BC的解析式为y=x﹣5,∴F(t,t﹣5),∴HF=t﹣5﹣(t2﹣4t﹣5)=﹣(t﹣ )2+,∵CE∥x轴,HF∥y轴,∴CE⊥HF,∴S四边形CHEF=CE•HF=﹣2(t﹣)2+,当t=时,四边形CHEF的面积最大为.(4)如图2,∵K为抛物线的顶点,∴K(2,﹣9),∴K关于y轴的对称点K'(﹣2,﹣9),∵M(4,m)在抛物线上,∴M(4,﹣5),∴点M关于x轴的对称点M'(4,5),∴直线K'M'的解析式为y=x﹣,∴P(,0),Q(0,﹣).考点:二次函数综合题.12.(2017江苏无锡第27题)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.【答案】(1)P(1,0).(2)y=x2﹣x﹣.(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题.试题解析:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设H(m,n),则P(m,0),PA=m+3,PB=3﹣m.∵EH∥AP,∴△ACP∽△ECH,∴,∴CH=2n,EH=2m=6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴,∴,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OP,在Rt△OCP中,PC=,∴CH=2PC=4,PH=6,∴E(9,6),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=,∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.考点:圆的综合题.13.(2017江苏无锡第28题)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【答案】(1);(2)≤m<4.【解析】试题分析:(1)只要证明△ABD∽△DPC,可得,由此求出PD即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3试题解析:(1)如图1中,∵四边形ABCD是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,∵∠A=∠CDP=90°,∴△ABD∽△DPC,∴,∴,∴PD=,∴t=s时,B、E、D共线.(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4易证四边形EMCQ是矩形,∴CM=EQ=3,∠M=90°,∴EM=,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,,∴,∴AD=4,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3.作EQ⊥BC于Q,延长QE交AD于M.则EQ=3,CE=DC=4在Rt△ECQ中,QC=DM=,由△DME∽△CDA,∴,∴,∴AD=,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,这样的m的取值范围≤m<4.考点:四边形综合题.14.(2017江苏盐城第24题)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.【答案】(1)作图见解析;(2)15+.【解析】试题分析:(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可;(2)添加如图所示辅助线,圆心O的运动路径长为C△OO1O2,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.试题解析:(1)如图①所示,射线OC即为所求;(2)如图,圆心O的运动路径长为C△OO1O2,过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴AC=,AB=2BC=18,∠ABC=60°,∴C△ABC=9+9+18=27+9,∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD=,∴OO1=9-2-2=7-2,∵O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°-90°-90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴,即,∴C△OO1O2=15+,即圆心O运动的路径长为15+.考点:切线的性质;作图—复杂作图.15.(2017江苏盐城第26题)【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【答案】【探索发现】;【拓展应用】;【灵活应用】720;【实际应用】1944cm2.【解析】试题分析:【探索发现】:由中位线知EF=BC、ED=AB、由可得;【拓展应用】:由△APN∽△ABC知,可得PN=a-PQ,设PQ=x,由S矩形PQMN=PQ•PN═-(x-)2+,据此可得;【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.试题解析:【探索发现】∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则【拓展应用】∵PN∥BC,∴△APN∽△ABC,∴,即,∴PN=a-PQ,设PQ=x,则S矩形PQMN=PQ•PN=x(a-x)=-x2+ax=-(x-)2+,∴当PQ=时,S矩形PQMN最大值为,【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI==24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC=,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=BC=54cm,∵tanB=,∴EH=BH=×54=72cm,在Rt△BHE中,BE==90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC•EH=1944cm2,答:该矩形的面积为1944cm2.考点:四边形综合题.16.(2017江苏盐城第27题)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.【答案】(1)y=-x2-x+2;(2)①;②-2或-.【解析】试题分析:(1)根据题意得到A(-4,0),C(0,2)代入y=-x2+bx+c,于是得到结论;(2)①如图,令y=0,解方程得到x1=-4,x2=1,求得B(1,0),过D作DM⊥x轴于M,过B作BN⊥x轴交于AC于N,根据相似三角形的性质即可得到结论;②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点P,求得P(-,0),得到PA=PC=PB=,过作x轴的平行线交y轴于R,交AC的延线于G,情况一:如图,∠DCF=2∠BAC=∠DGC+∠CDG,情况二,∠FDC=2∠BAC,解直角三角形即可得到结论.(2)①如图,令y=0,∴-x2-x+2=0,∴x1=-4,x2=1,∴B(1,0),过D作DM⊥x轴于M,过B作BN⊥x轴交于AC于N,∴DM∥BN,∴△DME∽△BNE,∴,设D(a,-a2-a+2),∴M(a,a+2),∵B(1.0),∴N(1,),∴;∴当a=2时,的最大值是;②∵A(-4,0),B(1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,∴P(-,0),∴PA=PC=PB=,∴∠CPO=2∠BAC,∴tan∠CPO=tan(2∠BAC)=,过作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,∴∠DCF=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=,即=,令D(a,-a2-a+2),∴DR=-a,RC=-a2-a,∴,∴a1=0(舍去),a2=-2,∴xD=-2,情况二,∴∠FDC=2∠BAC,∴tan∠FDC=,设FC=4k,∴DF=3k,DC=5k,∵tan∠DGC=,∴FG=6k,∴CG=2k,DG=3k,∴RC=k,RG=k,DR=3k-k=k,∴,∴a1=0(舍去),a2=,点D的横坐标为-2或-.考点:二次函数综合题.17.(2017甘肃兰州第28题)如图,抛物线与直线交于,两点,直线交轴与点,点是直线上的动点,过点作轴交于点,交抛物线于点.(1)求抛物线的表达式;(2)连接,,当四边形是平行四边形时,求点的坐标;(3)①在轴上存在一点,连接,,当点运动到什么位置时,以为顶点的四边形是矩形?求出此时点的坐标;②在①的前提下,以点为圆心,长为半径作圆,点为上一动点,求的最小值.【答案】(1)y=﹣x2﹣2x+4;(2)G(﹣2,4);(3)①E(﹣2,0).H(0,﹣1);②.【解析】试题分析:(1)利用待定系数法求出抛物线解析式;(2)先利用待定系数法求出直线AB的解析式,进而利用平行四边形的对边相等建立方程求解即可;(3)①先判断出要以点A,E,F,H为顶点的四边形是矩形,只有EF为对角线,利用中点坐标公式建立方程即可;②先取EG的中点P进而判断出△PEM∽△MEA即可得出PM=AM,连接CP交圆E于M,再求出点P的坐标即可得出结论.试题解析:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴ ,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣x﹣6,∴F(a,﹣a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣x﹣6,∴AB⊥AC,∴EF为对角线,∴(﹣4+0)=(a+a),(﹣4+p)=(2a+4﹣a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=,AE=2,设AE交⊙E于G,取EG的中点P,∴PE=,连接PC交⊙E于M,连接EM,∴EM=EH=,∴=,∵=,∴,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴,∴PM=AM,∴AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=,∴5(p+2)2=,∴p=﹣或p=﹣(由于E(﹣2,0),所以舍去),∴P(﹣,﹣1),∵C(0,﹣6),∴PC=,即:AM+CM=.考点:二次函数综合题.18.(2017贵州黔东南州第24题)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【答案】(1)y=﹣x2﹣x+.(2)证明见解析;(3)P(,)..【解析】试题分析:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入可求得a的值,从而得到抛物线的解析式;(2)连接AM,过点M作MG⊥AD,垂足为G.先求得点A和点B的坐标,可求得,可得到AG、ME、OA、OB的长,然后利用锐角三角函数的定义可证明∠MAG=∠ABD,故此可证明AM⊥AB;(3))先证明∠FPE=∠FBD.则PF:PE:EF=:2:1.则△PEF的面积=PF2,设点P的坐标为(x,﹣x2﹣x+),则F(x,﹣x+4).然后可得到PF与x的函数关系式,最后利用二次函数的性质求解即可.试题解析:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴A(0,4).将y=0代入得:0=﹣x+4,解得x=8,∴B(8,0).∴OA=4,OB=8.∵M(﹣1,2),A(0,4),∴MG=1,AG=2.∴tan∠MAG=tan∠ABO=.∴∠MAG=∠ABO.∵∠OAB+∠ABO=90°,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴△PEF的面积=PE•EF=PF•PF=PF2.∴当PF最小时,△PEF的面积最小.设点P的坐标为(x,﹣x2﹣x+,则F(x,﹣x+4).∴PF=(﹣x+4)﹣(﹣x2﹣x+)=﹣x+4+x2+x﹣=x2﹣x+=(x﹣)2+.∴当x=时,PF有最小值,PF的最小值为.∴P(,).∴△PEF的面积的最小值为=×()2=.考点:二次函数综合题.19.(2017山东烟台第24题)如图,菱形中,对角线相交于点,,动点从点出发,沿线段以的速度向点运动,同时动点从点出发,沿线段以的速度向点运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为,以点为圆心,为半径的⊙与射线,线段分别交于点,连接.(1)求的长(用含有的代数式表示),并求出的取值范围;(2)当为何值时,线段与⊙相切?(3)若⊙与线段只有一个公共点,求的取值范围.【答案】(1)BF=t(0<t≤8).(2)t=s时,线段EN与⊙M相切.(3)当0<t≤或<t<8时,⊙M与线段EN只有一个公共点.【解析】试题分析:(1)连接MF.只要证明MF∥AD,可得,即,解方程即可;(2)当线段EN与⊙M相切时,易知△BEN∽△BOA,可得,即,解方程即可;(3)①由题意可知:当0<t≤时,⊙M与线段EN只有一个公共点.②当F与N重合时,则有t+2t=16,解得t=,观察图象即可解决问题试题解析:(1)连接MF.∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OA=OC=6,OB=OD=8,在Rt△AOB中,AB==10,∵MB=MF,AB=AD,∴∠ABD=∠ADB=∠MFB,∴MF∥AD,∴,∴,∴BF=t(0<t≤8).(2)当线段EN与⊙M相切时,易知△BEN∽△BOA,∴,∴,∴t=.∴t=s时,线段EN与⊙M相切.(3)①由题意可知:当0<t≤时,⊙M与线段EN只有一个公共点.②当F与N重合时,则有t+2t=16,解得t=,关系图象可知,<t<8时,⊙M与线段EN只有一个公共点.综上所述,当0<t≤或<t<8时,⊙M与线段EN只有一个公共点.考点:圆的综合题.20.(2017山东烟台第25题)如图1,抛物线与轴交于两点,与轴交于点,,矩形的边,延长交抛物线于点.(1)求抛物线的表达式;(2)如图2,点是直线上方抛物线上的一个动点,过点作轴的平行线交直线于点,作,垂足为.设的长为,点的横坐标为,求与的函数关系是(不必写出的取值范围),并求出的最大值;(3)如果点是抛物线对称轴上的一点,抛物线上是否存在点,使得以为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2﹣x+2;(2)l=﹣(m+)2+,最大值为;(3)(2,﹣)或(﹣4,﹣)或(﹣2,2).【解析】试题解析:(1)∵矩形OBDC的边CD=1,∴OB=1,∵AB=4,∴OA=3,∴A(﹣3,0),B(1,0),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2﹣x+2;(2)在y=﹣x2﹣x+2中,令y=2可得2=﹣x2﹣x+2,解得x=0或x=﹣2,∴E(﹣2,2),∴直线OE解析式为y=﹣x,由题意可得P(m,﹣m2﹣m+2),∵PG∥y轴,∴G(m,﹣m),∵P在直线OE的上方,∴PG=﹣m2﹣m+2﹣(﹣m)=﹣m2﹣m+2=﹣(m+)2+,∵直线OE解析式为y=﹣x,∴∠PGH=∠COE=45°,∴l=PG=[﹣(m+)2+]=﹣(m+)2+,∴当m=﹣时,l有最大值,最大值为;(3)①当AC为平行四边形的边时,则有MN∥AC,且MN=AC,如图,过M作对称轴的垂线,垂足为F,设AC交对称轴于点L,则∠ALF=∠ACO=∠FNM,在△MFN和△AOC中∴△MFN≌△AOC(AAS),∴MF=AO=3,∴点M到对称轴的距离为3,又y=﹣x2﹣x+2,∴抛物线对称轴为x=﹣1,设M点坐标为(x,y),则|x+1|=3,解得x=2或x=﹣4,当x=2时,y=﹣,当x=﹣4时,y=,∴M点坐标为(2,﹣)或(﹣4,﹣);②当AC为对角线时,设AC的中点为K,∵A(﹣3,0),C(0,2),∴K(﹣,1),∵点N在对称轴上,∴点N的横坐标为﹣1,设M点横坐标为x,∴x+(﹣1)=2×(﹣)=﹣3,解得x=﹣2,此时y=2,∴M(﹣2,2);综上可知点M的坐标为(2,﹣)或(﹣4,﹣)或(﹣2,2).考点:二次函数综合题.21.(2017四川泸州第25题)如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.【答案】【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)当点D在x轴上方时,则可知当CD∥AB时,满足条件,由对称性可求得D点坐标;当点D在x轴下方时,可证得BD∥AC,利用AC的解析式可求得直线BD的解析式,再联立直线BD和抛物线的解析式可求得D点坐标;(3)过点P作PH∥y轴交直线BC于点H,可设出P点坐标,从而可表示出PH的长,可表示出△PEB的面积,进一步可表示出直线AP的解析式,可求得F点的坐标,联立直线BC和PA的解析式,可表示出E点横坐标,从而可表示出△CEF的面积,再利用二次函数的性质可求得S1-S2的最大值.试题解析:(1)由题意可得,解得,∴抛物线解析式为y=-;(2)当点D在x轴上方时,过C作CD∥AB交抛物线于点D,如图1,∵A、B关于对称轴对称,C、D关于对称轴对称,∴四边形ABDC为等腰梯形,∴∠CAO=∠DBA,即点D满足条件,∴D(3,2);当点D在x轴下方时,∵∠DBA=∠CAO,∴BD∥AC,∵C(0,2),∴可设直线AC解析式为y=kx+2,把A(-1,0)代入可求得k=2,∴直线AC解析式为y=2x+2,∴可设直线BD解析式为y=2x+m,把B(4,0)代入可求得m=-8,∴直线BD解析式为y=2x-8,联立直线BD和抛物线解析式可得,解得或,∴D(-5,-18);综上可知满足条件的点D的坐标为(3,2)或(-5,-18);(3)过点P作PH∥y轴交直线BC于点H,如图2,设P(t,-t+2),由B、C两点的坐标可求得直线BC的解析式为y=- ,∴H(t,-),∴PH=yP-yH=-=-,设直线AP的解析式为y=px+q,∴,解得,∴直线AP的解析式为y=(-t+2)(x+1),令x=0可得y=2-t,∴F(0,2-t),∴CF=2-(2-t)=t,联立直线AP和直线BC解析式可得,解得x=,即E点的横坐标为,∴S1=PH(xB-xE)=(-t2+2t)(5-),S2=••,∴S1-S2=(-t2+2t)(5-)-••,=-t2+5t=-(t-)2+,∴当t=时,有S1-S2有最大值,最大值为.考点:二次函数综合题.22.(2017四川宜宾第24题)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+4x+5;(2)m的值为7或9;(3)Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).【解析】试题分析:(1)由A、B的坐标,利用待定系数法可求得抛物线的解析式;(2)由题意可求得C点坐标,设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可求得C′点的坐标,则可求得平移的单位,可求得m的值;(3)由(2)可求得E点坐标,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,则可证得△PQN≌△EFB,可求得QN,即可求得Q到对称轴的距离,则可求得Q点的横坐标,代入抛物线解析式可求得Q点坐标;当BE为对角线时,由B、E的坐标可求得线段BE的中点坐标,设Q(x,y),由P点的横坐标则可求得Q点的横坐标,代入抛物线解析式可求得Q点的坐标.试题解析:(1)∵抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,∴,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C(﹣6,8),设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3,∴C′点的坐标为(1,8)或(3,8),∵C(﹣6,8),∴当点C落在抛物线上时,向右平移了7或9个单位,∴m的值为7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为x=2,∴可设P(2,t),由(2)可知E点坐标为(1,8),①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN,在△PQN和△EFB中∴△PQN≌△EFB(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,设Q(x,y),则QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,∴Q点坐标为(﹣2,﹣7)或(6,﹣7);②当BE为对角线时,∵B(5,0),E(1,8),∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,∴Q(4,5);综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).考点:二次函数综合题.23.(2017四川自贡第25题)如图1,在平面直角坐标系,O为坐标原点,点A(﹣1,0),点B(0,).(1)求∠BAO的度数;(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2,S1与S2有何关系?为什么?(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.【答案】(1)∠BAO=60°;(2)S1=S2;(3)S1=S2不发生变化;理由见解析.【解析】试题分析:(1)先求出OA,OB,再利用锐角三角函数即可得出结论;(2)根据等边三角形的性质可得AO=AA',再根据直角三角形30°角所对的直角边等斜边的一半求出AO=AB,然后求出AO=AA’,,然后再根据等边三角形的性质求出点O到AB的距离等于点A'到AO的距离,然后根据等底等高的三角形的面积相等解答;(3)根据旋转的性质可得BO=OB',AA'=OA',再求出∠AON=∠A'OM,然后再证明ΔAON≌ΔA'OM,可得AN=A'M,然后利用等底等高的三角形面积相等证明.试题解析:(1)∵A(﹣1,0),B(0, ),∴OA=1,OB=,在Rt△AOB中,tan∠BAO==,∴∠BAO=60°;(2)∵∠BAO=60°,∠AOB=90°,∴∠ABO=30°,∴CA'=AC=AB,∴OA'=AA'=AO,根据等边三角形的性质可得,△AOA'的边AO、AA'上的高相等,∴△BA'O的面积和△AB'O的面积相等(等底等高的三角形的面积相等),即S1=S2.(3)S1=S2不发生变化;理由:如图,过点'作A'M⊥OB.过点A作AN⊥OB'交B'O的延长线于N,∵△A'B'O是由△ABO绕点O旋转得到,∴BO=OB',AO=OA',∵∠AON+∠BON=90°,∠A'OM+∠BON=180°﹣90°=90°,∴∠AON=∠A'OM,在△AON和△A'OM中,,∴△AON≌△A'OM(AAS),∴AN=A'M,∴△BOA'的面积和△AB'O的面积相等(等底等高的三角形的面积相等),即S1=S2.考点:几何变换综合题.24.(2017新疆建设兵团第23题)如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.(1)试求A,B,C的坐标;(2)将△ABC绕AB中点M旋转180°,得到△BAD.3①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.【答案】(1)A(﹣1,0),B(4,0),C(0,2);(2)①D(3,﹣2);②四边形ADBC是矩形;理由见解析,(3)点P的坐标为:(1.5,1.25),(1.5,﹣1.25),(1.5,5),(1.5,﹣5). 【解析】试题分析:(1)直接利用y=0,x=0分别得出A,B,C的坐标;(2)①利用旋转的性质结合三角形各边长得出D点坐标;②利用平行四边形的判定方法结合勾股定理的逆定理得出四边形ADBC的形状;(3)直接利用相似三角形的判定与性质结合三角形各边长进而得出答案.试题解析:(1)当y=0时,0=﹣x2+x+2,解得:x1=﹣1,x2=4,则A(﹣1,0),B(4,0),当x=0时,y=2,故C(0,2);(2)①过点D作DE⊥x轴于点E,∵将△ABC绕AB中点M旋转180°,得到△BAD,∴DE=2,AO=BE=1,OM=ME=1.5,∴D(3,﹣2);②∵将△ABC绕AB中点M旋转180°,得到△BAD,∴AC=BD,AD=BC,∴四边形ADBC是平行四边形,∵AC=,BC=,AB=5,∴AC2+BC2=AB2,∴△ACB是直角三角形,∴∠ACB=90°,∴四边形ADBC是矩形;(3)由题意可得:BD=,AD=2,则,当△BMP∽△ADB时,,可得:BM=2.5,则PM=1.25,故P(1.5,1.25),当△BMP1∽△ABD时,P1(1.5,﹣1.25),当△BMP2∽△BDA时,可得:P2(1.5,5),当△BMP3∽△BDA时,可得:P3(1.5,﹣5),综上所述:点P的坐标为:(1.5,1.25),(1.5,﹣1.25),(1.5,5),(1.5,﹣5).考点:二次函数综合题.25.(2017江苏徐州第27题)如图,已知二次函数的图象与轴交于两点与轴交于点,⊙的半径为为⊙上一动点.(1)点的坐标分别为(),();(2)是否存在点,使得为直角三角形?若存在,求出点的坐标;若不存在,请说明理由;(3)连接,若为的中点,连接,则的最大值=.【答案】(1)3,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广西来宾市投资促进局招聘后勤服务控制数人员1人考前自测高频考点模拟试题及参考答案详解1套
- 2025江苏南通市通州区兴东街道招聘劳务派遣人员4人模拟试卷附答案详解(模拟题)
- 2025年北京师范大学庆阳实验学校教师招聘40人考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025河北保定市定兴县国有公司领导人员招聘2人考前自测高频考点模拟试题及答案详解一套
- 2025贵州沿河土家族自治县事业单位引进高层次和急需紧缺人才92人考前自测高频考点模拟试题带答案详解
- 2025国家统计局兴仁调查队招聘村级劳动保障协管员模拟试卷附答案详解(典型题)
- 2025贵州遵义医科大学附属口腔医院第十三届贵州人才博览会引进急需紧缺专业人才6人模拟试卷及答案详解(历年真题)
- 2025广西桂林荔浦市人民医院招聘16人模拟试卷及参考答案详解1套
- 2025甘肃省兰州市榆中县中医医院春季招聘15人模拟试卷及答案详解(夺冠系列)
- 2025年河北张家口市专职消防队伍管理中心第一批政府专职消防员招聘160名模拟试卷及答案详解(新)
- 低代码行业应用案例分析-深度研究
- 2.1岩石圈的组成及物质循环 课件高中地理鲁教版(2019)选择性必修1
- 外研版(三起)五年级上册英语期末完形填空专题训练
- 广东省惠州市联考2024-2025学年上学期12月教学质量阶段性诊断八年级数学试卷(无答案)
- 足下垂康复治疗
- GB/T 15822.3-2024无损检测磁粉检测第3部分:设备
- 工程结算协议书
- 2024-2030年中国痘痘贴行业营销动态及消费需求预测研究报告
- (高清版)AQ 1075-2009 煤矿低浓度瓦斯往复式内燃机驱动的交流发电机组通 用技术条件
- 六年级上册道德与法治全册教学课件
- 中国食物成分表2018年(标准版)第6版
评论
0/150
提交评论