高考数学一轮复习 第七章 §7.2 球的切、接问题 讲义(学生版)_第1页
高考数学一轮复习 第七章 §7.2 球的切、接问题 讲义(学生版)_第2页
高考数学一轮复习 第七章 §7.2 球的切、接问题 讲义(学生版)_第3页
高考数学一轮复习 第七章 §7.2 球的切、接问题 讲义(学生版)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§7.2球的切、接问题重点解读与球的切、接问题是历年高考的热点内容,一般以客观题的形式出现,考查空间想象能力、计算能力.其关键点是利用转化思想,把球的切、接问题转化为平面问题或特殊几何体来解决或转化为特殊几何体的切、接问题来解决.一、正方体与球1.内切球:内切球直径2R=正方体棱长a.2.棱切球:棱切球直径2R=正方体的面对角线长eq\r(2)a.3.外接球:外接球直径2R=正方体体对角线长eq\r(3)a.二、长方体与球外接球:外接球直径2R=体对角线长eq\r(a2+b2+c2)(a,b,c分别为长方体的长、宽、高).三、正棱锥与球1.内切球:V正棱锥=eq\f(1,3)S表·r=eq\f(1,3)S底·h(等体积法),r是内切球半径,h为正棱锥的高.2.外接球:外接球球心在其高上,底面正多边形的外接圆圆心为E,半径为r,R2=(h-R)2+r2(正棱锥外接球半径为R,高为h).四、正四面体的外接球、内切球若正四面体的棱长为a,高为h,正四面体的外接球半径为R,内切球半径为r,则h=eq\f(\r(6),3)a,R=eq\f(\r(6),4)a,r=eq\f(\r(6),12)a,R∶r=3∶1.五、正三棱柱的外接球球心到正三棱柱两底面的距离相等,正三棱柱两底面中心连线的中点为其外接球球心.R2=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(h柱,2)))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3)AD))2.六、圆柱的外接球R=eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(\f(h,2)))2+r2)(R是圆柱外接球的半径,h是圆柱的高,r是圆柱底面圆的半径).七、圆锥的外接球R2=(h-R)2+r2(R是圆锥外接球的半径,h是圆锥的高,r是圆锥底面圆的半径).题型一外接球命题点1定义法例1(1)(2023·茂名模拟)已知菱形ABCD的各边长为2,∠B=60°.将△ABC沿AC折起,折起后记点B为P,连接PD,得到三棱锥P-ACD,如图所示,当三棱锥P-ACD的表面积最大时,三棱锥P-ACD的外接球体积为()A.eq\f(5\r(2)π,3) B.eq\f(4\r(3)π,3)C.2eq\r(3)π D.eq\f(8\r(2)π,3)(2)(2023·韶关模拟)已知三棱柱ABC-A1B1C1的侧棱垂直于底面,且所有顶点都在同一个球面上,若AA1=AC=2,AB⊥BC,则此球的体积为________________.思维升华到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可.跟踪训练1某建筑的形状可视为内外两个同轴圆柱,某爱好者制作了一个实心模型,已知模型内层底面直径为12cm,外层底面直径为16cm,且内外层圆柱的底面圆周都在一个直径为20cm的球面上,则此模型的体积为________cm3.命题点2补形法例2数学中有许多形状优美、寓意独特的几何体,图1所示的礼品包装盒就是其中之一.该礼品包装盒可以看成是一个十面体,其中上、下底面为全等的正方形,所有的侧面是全等的等腰三角形.将长方体ABCD-A1B1C1D1的上底面A1B1C1D1绕着其中心旋转45°得到如图2所示的十面体ABCD-EFGH.已知AB=AD=2,AE=eq\r(7),则十面体ABCD-EFGH外接球的表面积是________________.跟踪训练2在四面体S-ABC中,SA⊥平面ABC,在△ABC中,内角B,A,C成等差数列,SA=AC=2,AB=1,则该四面体的外接球的表面积为________________.命题点3截面法例3(1)(2022·新高考全国Ⅱ)已知正三棱台的高为1,上、下底面边长分别为3eq\r(3)和4eq\r(3),其顶点都在同一球面上,则该球的表面积为()A.100πB.128πC.144πD.192π(2)在平面四边形ABCD中,AB=AD=CD=1,BD=eq\r(2),BD⊥CD.将其沿对角线BD折成四面体A′BCD,使平面A′BD⊥平面BCD.若四面体A′BCD的顶点在同一球面上,则该球的体积为()A.eq\f(\r(3)π,2)B.3πC.eq\f(\r(2)π,3)D.2π跟踪训练3(1)已知正四棱台的上、下底面的顶点都在一个半径为3的球面上,上、下底面正方形的外接圆半径分别为1和2,圆台的两底面在球心的同侧,则此正四棱台的体积为________________.(2)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为eq\f(32π,3),两个圆锥的高之比为1∶3,则这两个圆锥的体积之和为()A.3πB.4πC.9πD.12π题型二内切球例4如图所示,直三棱柱ABC-A1B1C1是一块石材,测量得∠ABC=90°,AB=6,BC=8,AA1=13.若将该石材切削、打磨,加工成几个大小相同的健身手球,则一个加工所得的健身手球的最大体积及此时加工成的健身手球的个数分别为()A.eq\f(32π,3),4 B.eq\f(9π,2),3C.6π,4 D.eq\f(32π,3),3跟踪训练4(1)(2023·淮北模拟)半球内放三个半径为eq\r(3)的小球,三小球两两相切,并且与球面及半球底面的大圆面也相切,则该半球的半径是()A.1+eq\r(3) B.eq\r(3)+eq\r(5)C.eq\r(5)+eq\r(7) D.eq\r(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论