




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省无锡锡山区四校联考数学九上期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列运算正确的是()A. B.C. D.2.对于方程,下列说法正确的是()A.一次项系数为3 B.一次项系数为-3C.常数项是3 D.方程的解为3.如图,是的直径,点是延长线上一点,是的切线,点是切点,,若半径为,则图中阴影部分的面积为()A. B. C. D.4.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A. B. C. D.5.“2020年的6月21日是晴天”这个事件是()A.确定事件 B.不可能事件 C.必然事件 D.不确定事件6.如图,AB是⊙O直径,若∠AOC=100°,则∠D的度数是()A.50° B.40° C.30° D.45°7.不透明袋子中有个红球和个白球,这些球除颜色外无其他差别,从袋中随机取出个球,是红球的概率是()A. B. C. D.8.如图,在正方形网格中,已知的三个顶点均在格点上,则的正切值为()A. B. C. D.9.已知反比例函数,下列各点在此函数图象上的是()A.(3,4) B.(-2,6) C.(-2,-6) D.(-3,-4)10.反比例函数与正比例函数在同一坐标系中的大致图象可能是()A. B.C. D.11.下列根式中,是最简二次根式的是()A. B. C. D.12.用配方法解一元二次方程,配方后的方程是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,OA⊥OB,等腰直角△CDE的腰CD在OB上,∠ECD=45°,将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为__________14.将一元二次方程用配方法化成的形式为________________.15.cos30°=__________16.已知一条抛物线,以下说法:①对称轴为,当时,随的增大而增大;②;③顶点坐标为;④开口向上.其中正确的是______.(只填序号)17.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为_____.18.二次函数y=x2﹣4x+3的对称轴方程是_____.三、解答题(共78分)19.(8分)如图,在中,,点是边上一点,连接,以为边作等边.如图1,若求等边的边长;如图2,点在边上移动过程中,连接,取的中点,连接,过点作于点.①求证:;②如图3,将沿翻折得,连接,直接写出的最小值.20.(8分)如图,已知点是坐标原点,两点的坐标分别为,.(1)以点为位似中心在轴的左侧将放大到原图的2倍(即新图与原图的相似比为2),画出对应的;(2)若内部一点的坐标为,则点对应点的坐标是______;(3)求出变化后的面积______.21.(8分)如图1,在矩形中,为边上一点,.将沿翻折得到,的延长线交边于点,过点作交于点.(1)求证:;(2)如图2,连接分别交、于点、.若,探究与之间的数量关系.22.(10分)据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈西尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”大意如下:如图,今有山位于树的西面.山高为未知数,山与树相距里,树高丈尺,人站在离树里的处,观察到树梢恰好与山峰处在同一斜线上,人眼离地尺,问山AB的高约为多少丈?(丈尺,结果精确到个位)23.(10分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)24.(10分)已知函数y=ax2+bx+c(a≠0,a、b、c为常数)的图像经过点A(-1,0)、B(0,2).(1)b=(用含有a的代数式表示),c=;(2)点O是坐标原点,点C是该函数图像的顶点,若△AOC的面积为1,则a=;(3)若x>1时,y<1.结合图像,直接写出a的取值范围.25.(12分)已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:△BAP≌△CAQ.(2)若PA=3,PB=4,∠APB=150°,求PC的长度.26.如图,坡AB的坡比为1:2.4,坡长AB=130米,坡AB的高为BT.在坡AB的正面有一栋建筑物CH,点H、A、T在同一条地平线MN上.(1)试问坡AB的高BT为多少米?(2)若某人在坡AB的坡脚A处和中点D处,观测到建筑物顶部C处的仰角分别为60°和30°,试求建筑物的高度CH.(精确到米,≈1.73,≈1.41)
参考答案一、选择题(每题4分,共48分)1、D【分析】根据题意利用合并同类项法则、完全平方公式、同底数幂的乘法运算法则及幂的乘方运算法则,分别化简求出答案.【详解】解:A.合并同类项,系数相加字母和指数不变,,此选项不正确;B.,是完全平方公式,(a-b)2=a2-2ab+b2,此选项错误;C.,同底数幂乘法底数不变指数相加,a2·a3=a5,此选项不正确;D.,幂的乘方底数不变指数相乘,(-a)4=(-1)4.a4=a4,此选项正确.故选:D本题考查了有理式的运算法则,合并同类项的关键正确判断同类项,然后按照合并同类项的法则进行合并;遇到幂的乘方时,需要注意若括号内有“-”时,其结果的符号取决于指数的奇偶性.2、B【分析】先把方程化为一元二次方程的一般形式,再求出其一次项系数、二次项系数及常数项即可.【详解】∵原方程可化为2x2−3x=0,∴一次项系数为−3,二次项系数为2,常数项为0,方程的解为x=0或x=,故选:B.本题考查的是一元二次方程的一般形式,熟知一元二次方程ax2+bx+c=0(a≠0)中,ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项是解答此题的关键.3、B【分析】连接OC,求出∠COD和∠D,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案.【详解】连接OC,
∵AO=CO,∠CAB=30°,
∴∠COD=2∠CAB=60°,
∵DC切⊙O于C,
∴OC⊥CD,
∴∠OCD=90°,
∴∠D=90°-∠COD=90°-60°=30°,
在Rt△OCD中,∠OCD=90°,∠D=30°,OC=4,∴,∴阴影部分的面积是:故选:B.本题考查了扇形的面积,三角形的面积的应用,还考查了等腰三角形性质,三角形的内角和定理,切线的性质,解此题的关键是求出扇形和三角形的面积.4、C【解析】试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C.考点:中心对称图形的概念.5、D【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.【详解】“2020年的6月21日是晴天”这个事件是随机事件,属于不确定事件,故选:D.本题主要考查了必然事件、不可能事件、随机事件的概念.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.6、B【分析】根据∠AOB=180°,∠AOC=100°,可得出∠BOC的度数,最后根据圆周角∠BDC与圆心角∠BOC所对的弧都是弧BC,即可求出∠BDC的度数.【详解】解:∵AB是⊙O直径,∴∠AOB=180°,∵∠AOC=100°,∴∠BOC=∠AOB-∠AOC=80°;∵所对的圆周角是∠BDC,圆心角是∠BOC,∴;故答案选B.本题考查同圆或等圆中,同弧或等弧所对的圆周角是圆心角的一半,在做题时遇到已知圆心角,求圆周角的度数,可以通过计算,得出相应的圆心角的度数,即可得出圆周角的度数.7、D【分析】利用概率公式直接求解即可.【详解】解:袋子装有个球,其中个红球,个白球,从中任意摸出一个球,则摸出的球是红球的概率是:故选:.本题考查的是利用概率的定义求事件的概率.8、D【分析】延长交网格于,连接,得直角三角形ACD,由勾股定理得出、,由三角函数定义即可得出答案.【详解】解:延长交网格于,连接,如图所示:则,,,的正切值;故选:D.本题考查了解直角三角形以及勾股定理的运用;熟练掌握勾股定理,构造直角三角形是解题的关键.9、B【解析】依次把各个选项的横坐标代入反比例函数的解析式中,得到纵坐标的值,即可得到答案.【详解】解:A.把x=3代入得:,即A项错误,B.把x=-2代入得:,即B项正确,C.把x=-2代入得:,即C项错误,D.把x=-3代入得:,即D项错误,故选:B.本题考查了反比例函数图象上点的坐标特征,正确掌握代入法是解题的关键.10、A【分析】分a>0和a<0两种情况,根据反比例函数与正比例函数的图象的性质判断即可.【详解】解:当a>0时,反比例函数图象在一、三象限,正比例函数图象经过一、二、三象限;当a<0,反比例函数图象在二、四象限,正比例函数图象经过二、三、四象限.故选:A.本题考查的知识点是反比例函数与正比例函数图象的性质,熟记性质内容是解此题的关键.11、D【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),逐一判断即可得答案.【详解】A.=,故该选项不是最简二次根式,不符合题意,B.=,故该选项不是最简二次根式,不符合题意,C.=,故该选项不是最简二次根式,不符合题意,D.是最简二次根式,符合题意,故选:D.本题考查了对最简二次根式的理解,被开方数不含有能开的尽方的因式或因数,被开方数不含有分数的二次根式叫做最简二次根式;能熟练地运用定义进行判断是解此题的关键.12、C【分析】先移项变形为,再将两边同时加4,即可把左边配成完全平方式,进而得到答案.【详解】∵∴∴∴故选C.本题考查配方法解一元二次方程,熟练掌握配方法的解法步骤是解题的关键.二、填空题(每题4分,共24分)13、【分析】由旋转角的定义可得∠DCM=75°,进一步可得∠NCO=60°,△NOC是30°直角三角形,设DE=a,将OC,CD用a表示,最后代入即可解答.【详解】解:由题意得∠DCM=75°,∠NCM=∠ECD=45°∴∠NCO=180°-75°-45°=60°∴∠ONC=90°-60°=30°设CD=a,CN=CE=a∴OC=CN=∴故答案为.本题主要考查了旋转的性质、等腰直角三角形的性质,抓住旋转的旋转方向、旋转角,找到旋转前后的不变量是解答本题的关键.14、【分析】把方程常数项移到右边,两边加上1,变形得到结果,即可得到答案.【详解】解:由方程,变形得:,配方得:,即;故答案为.此题考查了解一元二次方程——配方法,熟练掌握完全平方公式是解本题的关键.15、【分析】直接利用特殊角的三角函数值进而得出答案.【详解】cos30°=.故答案为.本题主要考查了特殊角的三角函数值,准确记忆特殊角的三角函数值是解题的关键.16、①④【分析】先确定顶点及对称轴,结合抛物线的开口方向逐一判断.【详解】因为y=2(x﹣3)2+1是抛物线的顶点式,顶点坐标为(3,1),①对称轴为x=3,当x>3时,y随x的增大而增大,故①正确;②,故②错误;③顶点坐标为(3,1),故③错误;④∵a=1>0,∴开口向上,故④正确.故答案为:①④.本题考查了二次函数的性质以及函数的单调性和求抛物线的顶点坐标、对称轴及最值的方法.熟练掌握二次函数的性质是解题的关键.17、1【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)-3α,然后利用整体代入的方法计算即可.【详解】解:∵α,β是方程x2﹣3x﹣4=1的两个实数根,∴α+β=3,αβ=-4,∴α2+αβ﹣3α=α(α+β)-3α=3α-3α=1.故答案为1本题主要考查了根与系数的关系,解题的关键是利用整体法代值计算,此题难度一般.18、x=1【分析】二次函数y=ax1+bx+c的对称轴方程为x=﹣,根据对称轴公式求解即可.【详解】解:∵y=x1﹣4x+3,∴对称轴方程是:x=﹣=1.故答案为:x=1.本题考查了根据二次函数的一般式求对称轴的公式,需要熟练掌握.三、解答题(共78分)19、(1);(2)证明见解析;(3)最小值为【分析】(1)过C做CF⊥AB,垂足为F,由题意可得∠B=30°,用正切函数可求CF的长,再用正弦函数即可求解;(2)如图(2)1:延长BC到G使CG=BC,易得△CGE≌△CAD,可得CF∥GE,得∠CFA=90°,CF=GE再证DG=AD,得CF=DG,可得四边形DGFC是矩形即可;(3)如图(2)2:设ED与AC相交于G,连接FG,先证△EDF≌△FD'B得BD'=DE,当DE最大时最小,然后求解即可;【详解】解:(1)如图:过C做CF⊥AB,垂足为F,∵,∴∠A=∠B=30°,BF=3∵tan∠B=∴CF=又∵sin∠CDB=sin45°=∴DC=∴等边的边长为;①如图(2)1:延长BC到G使CG=BC∵∠ACB=120°∴∠GCE=180°-120°=60°,∠A=∠B=30°又∵∠ACB=60°∴∠GCE=∠ACD又∵CE=CD∴△CGE≌△CAD(SAS)∴∠G=∠A=30°,GE=AD又∵EF=FB∴GE∥FC,GE=FC,∴∠BCF=∠G=30°∴∠ACF=∠ACB-∠BCF=90°∴CF∥DG∵∠A=30°∴GD=AD,∴CF=DG∴四边形DGFC是平行四边形,又∵∠ACF=90°∴四边形DGFC是矩形,∴②)如图(2)2:设ED与AC相交于G,连接FG由题意得:EF=BF,∠EFD=∠D'FB∴△EDF≌△FD'B∴BD'=DE∴BD'=CD∴当BD'取最小值时,有最小值当CD⊥AB时,BD'min=AC,设CDmin=a,则AC=BC=2a,AB=2a的最小值为;本题属于几何综合题,考查了矩形的判定、全等三角形的判定、直角三角形的性质等知识点;但本题知识点比较隐蔽,正确做出辅助线,发现所考查的知识点是解答本题的关键.20、(1)见解析;(2);(3)10【分析】(1)把B、C的横纵坐标都乘以-2得到B′、C′的坐标,然后描点即可;(2)利用(1)中对应点的关系求解;(3)先计算△OBC的面积,然后利用相似的性质把△OBC的面积乘以4得到△OBꞌCꞌ的面积.【详解】解:(1)如图,为所作;(2)点对应点的坐标是;(3)的面积.本题考查了作图-位似变换:熟练应用以原点为位似中心的两位似图形对应点的坐标的关系确定变换后对应点的坐标,然后描点得到变换后的图形.21、(1)详见解析;(2).【分析】(1)过点作于点,根据矩形的判定可得四边形和四边形是矩形,从而得出,,,然后证出,列出比例式,再利用等量代换即可得出结论;(2)设,则,先证出,可得,然后证出,可得,即可求出EF和AC的关系,从而求出与之间的数量关系.【详解】(1)证明:过点作于点,如图1所示:则四边形和四边形是矩形,∴,,,∵,∴,∴,∴,∴,∴,即;(2)解:∵,∴设,则,由(1)可知:,,∵,∴,∴,,∵,∴,∴,∴,根据翻折的性质可得∵DC∥AB,∠APB=90°∴+∠BPM=90°,∠PAM+∠PBM=90°∴∠BPM=∠PBM∴MP=MA,MP=MB∴,∴,∵,∴,∴,∴,∴,∴.此题考查的是矩形的性质、相似三角形的判定及性质和折叠的性质,掌握矩形的性质、相似三角形的判定及性质和折叠的性质是解决此题的关键.22、由的高约为丈.【分析】由题意得里,尺,尺,里,过点作于点,交于点,得尺,里,里,根据相似三角形的性质即可求出.【详解】解:由题意得里,尺,尺,里.如图,过点作于点,交于点.则尺,里,里,,∴△ECH∽△EAG,,丈,丈.答:由的高约为丈.此题主要考查了相似三角形在实际生活中的应用,能够将实际问题转化成相似三角形是解题的关键.23、(1)见解析;(2).【分析】(1)连接BD,OD,求出OD∥BC,推出OD⊥DE,根据切线判定推出即可.(2)求出∠BOD=∠GOB,从而求出∠BOD的度数,根据弧长公式求出即可.【详解】解:(1)证明:连接BD、OD,∵AB是⊙O直径,∴∠ADB=90°.∴BD⊥AC.∵AB=BC,∴AD=DC.∵AO=OB,∴DO∥BC.∵DE⊥BC,∴DE⊥OD.∵OD为半径,∴DE是⊙O切线.(2)连接OG,∵DG⊥AB,OB过圆心O,∴弧BG=弧BD.∵∠A=35°,∴∠BOD=2∠A=70°.∴∠BOG=∠BOD=70°.∴∠GOD=140°.∴劣弧DG的长是.24、(1)a+2;2;(2)-2或;(3)【分析】(1)将点B的坐标代入解析式,求得c的值;将点A代入解析式,从而求得b;;(2)由题意可得AO=1,设C点坐标为(x,y),然后利用三角形的面积求出点C的纵坐标,然后代入顶点坐标公式求得a的值;(3)结合图像,若x>1时,y<1,则顶点纵坐标大于等于1,根据顶点纵坐标公式列不等式求解即可.【详解】解:(1)将B(0,2)代入解析式得:c=2将A(-1,0)代入解析式得:a×(-1)2+b×(-1)+c=0∴a-b+2=0∴b=a+2故答案为:a+2;2(2)由题意可知:AO=1设C点坐标为(x,y)则解得:当y=2时,由(1)可知,b=a+2;c=2∴解得:a=-2当y=-2时,由(1)可知,b=a+2;c=2∴解得:∴a的值为-2或(3)若x>1时,y<1,又因为图像过点A(-1,0)、B(0,2)∴图像开口向下,即a<0则该图像顶点纵坐标大于等于1∴即解得:或(舍去)∴a的取值范围为本题考查二次函数的性质,掌握顶点坐标公式及数形结合思想解题是本题的解题关键.25、(1)见解析;(2)1【分析】(1)直接利用旋转的性质结合全等三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年湖南张家界市公安局招聘360名警务辅助人员考前自测高频考点模拟试题及答案详解(典优)
- 2025年甘肃省定西市临洮二中楼宇管理人员招聘模拟试卷有完整答案详解
- 2025年度湖北省发展和改革委员会考试录用公务员专业测试考前自测高频考点模拟试题附答案详解(完整版)
- 2025吉林农业大学招聘博士及急需紧缺人才80人(1号)考前自测高频考点模拟试题及答案详解(全优)
- 2025贵州余庆县招聘10名城镇公益性岗位人员模拟试卷及答案详解(网校专用)
- 2025福建南平市武夷山市供销总公司招聘3人模拟试卷及参考答案详解
- 2025广东中山市横栏镇纪检监察办公室招聘1人模拟试卷及答案详解(典优)
- 2025广东中山大学附属口腔医院放射科影像技师招聘考前自测高频考点模拟试题带答案详解
- 2025北京协和医院妇产科学系中心实验室科研人员招聘模拟试卷及参考答案详解1套
- 2025贵州经贸职业技术学院第十三届贵州人才博览会引才模拟试卷及答案详解(全优)
- 码头生产调度管理办法
- 重症胰腺炎课件教学
- 智能巡查机器人系统设计
- 3.2营造清朗空间教学设计 2025-2026学年统编版道德与法治八年级上册
- 教科版物理八年级上册《2.光的反射定律》听评课记录2
- (2025年标准)学生癫痫免责协议书
- 电商企业客服流失的问题及解决对策研究
- 血常规及凝血功能解读
- 2025年华为自动化控制试题
- (2025年)江苏省南通市辅警协警笔试笔试模拟考试试题含答案
- 学堂在线 生活英语听说 章节测试答案
评论
0/150
提交评论